Tussles in Brussels: How Einstein vs Bohr Shaped Modern Science Debates

In one corner, we have a German-born theoretical physicist famous for his discovery of the photoelectric effect and his groundbreaking research on relativity theory. In the opposite corner, hailing from Denmark, we have a theoretical physicist famous for his transformational work on quantum theory and atomic structure. Albert Einstein and Niels Bohr frequently butted heads over the interpretation of quantum mechanics and even over the scope and purpose of physics, and their debates still resonate today.

Niels Bohr and Albert Einstein (photo by Paul Ehrenfest, 1925).

Niels Bohr and Albert Einstein (photo by Paul Ehrenfest, 1925).

In a class on “Waves, Optics, and Modern Physics,” I am teaching my students fundamentals about quantum physics, and I try to incorporate some of this important history too. In the early 20th century, physicists gradually adopted new concepts such as discrete quantum energy states and wave-particle duality, in which under certain conditions light and matter exhibit both wave and particle behavior. Nevertheless, other quantum concepts proposed by Bohr and his colleagues, such as non-locality and a probabilistic view of the wave function, proved more controversial. These are not mere details, as more was at stake—whether one can retain scientific realism and determinism, as was the case with classical physics, if Bohr’s interpretation turns out to be correct.

Bohr had many younger followers trying to make names for themselves, including Werner Heisenberg, Max Born, Wolfgang Pauli, and others. As experimental physicists explored small-scale physics, new phenomena required explanations. One could argue that some of Bohr and his followers’ discoveries and controversial hypotheses were to some extent just developments of models that managed to fit the data, and the models needed a coherent theoretical framework to base them on. On the other hand, Einstein, Erwin Schrödinger, and Louis de Broglie were skeptical or critical about some of these proposals.

The debates between Einstein and Bohr came to a head as they clashed in Brussels in 1927 at the Fifth Solvay Conference and at the next conference three years later. It seems like all of the major physics figures of the day were present, including Einstein, Bohr, Born, Heisenberg, Pauli, Schrödinger, de Broglie, Max Planck, Marie Curie, Paul Dirac, and others. (Curie was the only woman there, as physics had an even bigger diversity problem back then. The nuclear physicist Lise Meitner came on the scene a couple years later.)

Conference participants, October 1927. Institut International de Physique Solvay, Brussels.

Conference participants, October 1927. Institut International de Physique Solvay, Brussels.

Einstein tried to argue, with limited success, that quantum mechanics is inconsistent. He also argued, with much more success in my opinion, that (Bohr’s interpretation of) quantum mechanics is incomplete. Ultimately, however, Bohr’s interpretation carried the day and became physicists’ “standard” view of quantum mechanics, in spite of later developments by David Bohm supporting Einstein’s realist interpretation.

Although the scientific process leads us in fruitful directions and encourages us to explore important questions, it does not take us directly and inevitably toward a unique “truth.” It’s a messy nonlinear process, and since scientists are humans too, the resolution of scientific debates can depend on historically contingent social and cultural factors. James T. Cushing (my favorite professor when I was an undergraduate) argued as much in his book, Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony.

Why do the Einstein vs Bohr debates still fascinate us—as well as historians, philosophers, and sociologists—today? People keep discussing and writing about them because these two brilliant and compelling characters confronted each other about issues with implications about the scope and purpose of physics and how we view the physical world. Furthermore, considering the historically contingent aspects of these developments, we should look at current scientific debates with a bit more skepticism or caution.

Implications for Today’s Scientific Debates

In recent years, we have witnessed many intriguing disagreements about important issues in physics and astrophysics and in many other fields of science. For example, in the 1990s and 2000s, scientists debated whether the motions, masses, and distributions of galaxies were consistent with the existence of dark matter particles or whether gravitational laws must be modified. Now cosmologists disagree about the likely nature of dark energy and about the implications of inflation for the multiverse and parallel universes. And string theory is a separate yet tenuously connected debate. On smaller scales, we have seen debates between astrobiologists about the likelihood of intelligent life on other planets, about whether to send missions to other planets, and even disagreements about the nature of planets, which came to the fore with Pluto‘s diminished status.

Scientists play major roles in each case and sometimes become public figures, including Stephen Hawking, Neil deGrasse Tyson, Roger Penrose, Brian Greene, Sean Carroll, Max Tegmark, Mike Brown, Carolyn Porco, and others. Moreover, many scientists are also science communicators and actively participate in social media, as conferences aren’t the only venues for debates anymore. For example, 14 of the top 50 science stars on Twitter are physicists or astronomers. Many scientists communicate their views to the public, and people want to hear them weigh in on important issues and on “what it all means.” (Contrary to an opinion expressed by deGrasse Tyson, physicists are philosophers too.)

In any case, as scientific debates unfold, we should keep in mind that sometimes we cannot find a unique elegant explanation to a phenomenon, or if such an explanation exists, it may remain beyond our grasp for a long time. Furthermore, we should keep our minds open to the possibility that our own interpretation of a scientific phenomenon could be incomplete, incoherent, or even incorrect.

Physics Diplomacy and the Iran Nuclear Deal

After much anticipation and cautious optimism, US, European, and Iranian negotiators managed to put together a nuclear framework in Lausanne, Switzerland earlier this month. It sets the stage for a final detailed agreement to be developed in June, which will transform Iran’s nuclear program and reduce sanctions against Iran that have weakened its economy. It appears that diplomats have nearly bridged a formidable foreign policy impasse that plagued their respective governments for over a decade.

Perhaps more importantly, a rapprochement with Iran could gradually end the country’s international isolation since 1979 following the revolution. In addition, from the perspective of Iran and some other Middle East countries, Iran’s improved relations with the US and its fair treatment under the nuclear Non-Proliferation Treaty (NPT) would make the US appear less hypocritical and less a source of instability. As an historical aside, it’s also worth noting that Iran started its nuclear program in 1967 with US help as part of Eisenhower’s “Atoms for Peace” program, and unlike Iran, three countries in the region with nuclear programs (Israel, Pakistan, and India) have not signed and ratified the NPT.

Iranian Foreign Minister Zarif and US Secretary of State Kerry in Paris on 16 Jan. 2015. (Source: US State Department)

Iranian Foreign Minister Zarif and US Secretary of State Kerry in Paris on 16 Jan. 2015. (Source: US State Department)

Important Characters

Many interesting aspects of this agreement and situation are worth discussing. First, much credit for this historic achievement goes to Iranian Foreign Minister Zarif, US Secretary of State Kerry, and EU foreign policy chief Federica Mogherini, though of course all of the negotiating teams put in a lot of hard and stressful work to make it happen. Both Kerry and Zarif now face a difficult balancing act: staying true to the framework and focusing on delivering a final agreement while navigating domestic political concerns.

The latter may reflect the different messages and emphases in the statements made by Kerry and Zarif as they returned to their home countries. For example, Zarif and President Rouhani spoke more about relief from sanctions and freedom to enrich uranium while Kerry and President Obama spoke about the limits and restrictions on Iran’s nuclear program. Furthermore, while some influential Iranian “hard-liners” like Hossein Shariatmadari criticized the deal, US senators in the Foreign Relations Committee led by Bob Corker (R-Tenn.) sought to pass a bill that would incorporate Congressional oversight but also had the potential to jeopardize diplomatic efforts.

US Energy Secretary Ernest J. Moniz and Ali Akbar Salehi, head of Iran’s Atomic Energy Organization also are important characters in this story. As pointed out in the New York Times and the Guardian, both had studied nuclear science at the Massachusetts Institute of Technology in the mid-1970s, and they became No. 2 negotiators and “atomic diplomats” during the nuclear talks. Perhaps having experienced physicists involved helped cooler heads to prevail? (I’m half-joking; remember the Manhattan Project?)

Technical Details

Let’s explore some of the technical elements of the nuclear framework. According to the International Atomic Energy Agency (IAEA) and US intelligence, Iran ended any weapons research it may have had in 2003. However, because of its power plant in Bushehr, its enrichment facilities in Natanz and Fordo, and its heave water reactor under construction near Arak, Iran has the capability to enrich weapons-grade uranium.

Only 0.3% of natural uranium is in the form of the 235U isotope. For power reactors, 3.5% enrichment is needed, while 20% is considered a threshold for “weapons-usable” uranium, and 90% enrichment is weapons-grade. Moreover, when uranium is burned, the spent fuel can be processed to extract plutonium. (And as we know from Fukushima, those spent fuel pools can be dangerous.)

Iran currently has 19,000 centrifuges for enriching uranium, and they are operating only 9,000 of them. If Iran wanted to, analysts predict that they are 2-3 months away from acquiring enough fissile material for one weapon; the US and Europe seek to prevent a nuclear “breakout” by extending this to at least one year, for a duration of at least 10 years. In addition, the international community will set up strict inspection and transparency measures that would allow it to detect any Iranian efforts to violate the accord.

For more information, see the US State Department’s detailed fact sheet and these Union of Concerned Scientists (UCS) and Science Insider articles. The UCS also recently held a webinar with directors and members of its Global Security Program: Drs. Lisbeth Gronlund, David Wright, and Edwin Lyman.

The agreement’s key provisions may be summarized as follows. The first one involves inspections and transparency: the IAEA will have access to Iran’s nuclear facilities, supply chain, uranium mines, centrifuge production, storage facilities, as well as any suspicious sites. Second, US and EU nuclear sanctions will be lifted after the IAEA verifies key steps, and they will “snap back” if necessary. Also, the UN Security Council will pass a new resolution and will set up a dispute resolution program. Third, for the enrichment, the number of centrifuges will be reduced to 6,104 IR-1s (1st-generation centrifuges), and Iran is not allowed to enrich uranium beyond 3.67% for at least 15 years or build new enrichment facilities during that time. Enrichment R&D will be limited as well, and there are plans to convert Fordo facility to an international research center. Fourth, Iran will modify the Arak research reactor to reduce plutonium production, ship spent fuel out of the country, and they are not allowed to engage in reprocessing or reprocessing R&D indefinitely.

The Fordo facility, built below a mountain, will be turned into a research lab. (Credit: IAEA Imagebank/Flickr)

The Fordo facility, built below a mountain, will be turned into a research lab. (Credit: IAEA Imagebank/Flickr)

According an interview with Seyed Hossein Mousavian, former ambassador and nuclear negotiator for Iran, the US and world powers got what they wanted: Iran has accepted the maximum level of transparency and verification, including confidence-building measures that would ensure there would be no breakout or diversion toward weaponization. For Iran, negotiators can say that their rights for peaceful nuclear technology under the NPT was accepted, and all unilateral and multi-lateral nuclear-related sanctions will be lifted.

Implications

This historic diplomatic achievement, assuming that it comes to fruition with a final detailed agreement in June, will satisfy many concerns on both sides. It likely will result in improved relations and more respect for Iran. Importantly, it will also aid scientists and scientific research in Iran. Over a history of thousands of years, Persians have contributed fundamental scientific discoveries, including for example, by 10th century luminaries, the physicist Alhazen and astronomer Biruni. Now Persian scientists can engage in more international collaboration, and the new physics laboratory in Fordo will be an excellent start. (For more, see these articles in Science, Nature, and NY Review of Books.)

Finally, this has implications for the region. If relations between Iran and world powers improve, Iran could play a much more important role in Middle Eastern affairs. I think this is as it should be, but those who see these relations as a zero-sum game, including some in Saudi Arabia and Israel, oppose the deal for that reason. Leaders of another regional power, Turkey, have not opposed it, however. Furthermore, the success of diplomacy helps to continue nonproliferation efforts under the NPT around the world. We should also acknowledge though, as long as people view nuclear power as the primary alternative to fossil fuels, many countries will invest in it, and the risk of nuclear breakout and proliferation will remain, in spite of IAEA efforts and the NPT.

How Do Politics Interfere with the National Science Foundation and NASA?

Why do Congress members members keep getting involved in scientists’ work? Is it because they really love science? In my opinion, this interference impedes scientists’ communities from setting their own priorities and from continuing their work. (I argued as much when I spoke to Senator Feinstein’s staff at her San Diego office recently.) But first I’ll describe how Representatives in the House Science Committee seek to interfere with the National Science Foundation’s peer-review process and how a Subcommittee Chair in the Senate interferes with NASA’s scientific programs. As budget negotiations begin for FY 2016, these issues take on additional importance.

Suppose the scientist Dr. X wrote a paper about her findings and wants to publish it. She’d submit it to a journal, where it would go through the peer-review process: a peer reviewer would review the paper and assess whether it is publishable and appropriate for the journal. When Dr. X submits a proposal for a research grant with a federal agency, such as with the National Science Foundation (NSF), the process works sort of similarly. More is at stake though, and a panel of reviewers review many proposals and assess their scientific merits.

nsf1

In the context of budget debates during the recession and ongoing “sequestration,” it’s natural that policy-makers would scrutinize agencies’ budgets. Nevertheless, in the federal R&D budgets by agency, the NSF’s is rather small—much smaller than the National Institutes of Health and the Department of Defense, for example—and in any case, hasn’t the NSF been doing a good job? In spite of this, last year the House Committee on Science, Space, and Technology (“House Science Committee,” for short), chaired by Representative Lamar Smith (R–TX), began “an unprecedented—and some say bizarre—intrusion into the much admired process that NSF has used for more than 60 years to award research grants,” according to science policy analyst Jeffrey Mervis.

Representatives Eddie Bernice Johnson (D–TX) and Lamar Smith (R–TX). Credit: Science Insider

Representatives Eddie Bernice Johnson (D–TX) and Lamar Smith (R–TX). Credit: Science Insider

In 1976, Senator William Proxmire (D–WI) attacked scientific research with the annual “Golden Fleece” Awards, the first of which went to the NSF. These awards and Proxmire’s grandstanding resulted in generating suspicion towards government spending on science. Senator Tom Coburn (R-OK) continued this legacy by criticizing primarily research grants in the Social, Behavioral, and Economic (SBE) sciences. In response, a few years ago, a coalition of scientific groups started the Golden Goose Awards to highlight “examples of seemingly obscure studies that have led to major breakthroughs and resulted in significant societal impact.”

Lamar Smith’s current attack goes further than the Golden Fleece Awards by investigating the NSF’s peer-review process itself, and scientists are concerned about whether the process will remain confidential. Moreover, Smith would like to ensure that every research grant funded by the NSF is in the “national interest;” any other research, according to him, constitutes “wasteful spending.” It seems that Smith’s mission is to attack research in the social sciences, and at the same time he threatens to “compromise the integrity of NSF’s merit review system as part of this campaign,” according to House Science Committee member Rep. Eddie Bernice Johnson (D–TX). (For more coverage, see these excellent articles in Science, National Geographic, and LA Times.)

Finally, on a more positive note, it seems that Smith and NSF Director France Córdova may eventually resolve their disagreements. Following a hearing on the NSF’s grant making policies and procedures, Smith backed down from his previous position and appears to have endorsed the NSF’s peer review system. This is encouraging, but I fear that the battle isn’t over.

Senator Ted Cruz (R-TX). (Credit: AP)

Senator Ted Cruz (R-TX). (Credit: AP)

But it’s not just the NSF that has experienced politicians interfering in its work. NASA faces a somewhat similar situation. (The Environmental Protection Agency has also withstood attacks in recent weeks, but that’s another story.) Senator Ted Cruz (R-TX), the new chair of the Senate Commerce Subcommittee on Science and Space, which oversees NASA, is getting involved in that agency’s work. At a budget hearing, Cruz questioned Charles Bolden, a former astronaut and NASA’s administrator, to explain NASA’s funding of earth sciences (also known as geosciences), which Cruz claimed are not “hard science.” Cruz argued that manned space exploration is NASA’s “core mission,” and earth sciences have nothing to do with that.

Bolden responded, “It is absolutely critical that we understand Earth’s environment, because this is the only place we have to live…We’ve got to take care of it. and the only way to take care of it is to know what’s happening.” Moreover, according to the American Geophysical Union (AGU) in Science magazine, one can’t decouple earth sciences and planetary sciences, which are inextricably linked. (For more coverage, also check out these articles in the Guardian, Slate, and Salon.)

Cruz is right that the proportion of NASA funding going to earth science research has increased over the past few years, but there is a reason for that. In my opinion, some people reporting on this in the news seem to focus on the misguided and ill-informed views of Senator Cruz when it comes to climate science in particular. But I think the issue here is that politicians shouldn’t generally interfere with scientists doing their work as best they can. Scientists in the space sciences (including earth sciences) periodically write reports known as Decadal Surveys, in which they set their short- and long-term priorities for investing funding and research. Though there could be more interaction and better communication between scientists and policy makers, especially when some research programs might have policy implications, that doesn’t mean that non-scientists know better when it comes to setting priorities for scientific research.

These debates don’t happen in a vacuum but are related to the larger context of federal budgets for science research, education, and public outreach. Negotiations for FY 2016 budgets are already underway, and just last week scientists and their allies advocated for a 5% increase to the NSF’s budget, primarily going to telescope construction projects and the Atmospheric and Geospace Sciences Division, as well as an 11% increase to its education budget. The debates surely will continue, and I’ll keep you posted.

Update: US Federal Science Budget for 2015

Last week, three months into the fiscal year, the US Congress avoided a government shutdown and finally passed a budget for 2015. Better late than never. As I wrote about during the time of the midterm election, the budget situation is particularly important for science research and development and for education and public outreach. The $1.1 trillion and 1,600 page omnibus bill includes many important non-science issues of course, such as provisions reducing financial regulations and others allowing larger campaign contributions to political parties, and the bill does not address funding for the Department of Homeland Security, which will be decided in February, but my focus here, as usual, is on the implications for science.

Many agencies will receive small budget increases for science and technology relative to FY 2014 and to the President’s initial budget request (but excluding his Opportunity, Growth, and Security Initiative). According to the American Association for the Advancement of Science (AAAS), federal research and development (R&D) would rise to $137.6 billion, which is a 1.7% increase from last year and consistent with inflation. This was not guaranteed, however, and scientists were braced for the worst. Under the current circumstances, the science budgets will fare rather well.

Importantly, note that the budget bill includes discretionary spending subject to the caps established by the Budget Control Act (“sequestration”) and modified last year. In addition, the cost of mandatory spending, including Social Security, Medicare and Medicaid, continues to increase; without more revenue, these will take a larger share in coming years. The following figure shows federal R&D relative to GDP. It’s courtesy of AAAS, and if you want more details about budget issues, I recommend reading Matt Hourihan‘s writings there, which includes a breakdown by agency. Details can also be found at the American Institute of Physics science policy news.

15p Omnibus GDP graph

NASA

For specific agencies, let’s start with NASA. In the omnibus bill, NASA received a budget of $18.01B, a significant increase over the President’s request and slightly larger than the inflation rate. For NASA’s Astrophysics Division, most of the budget increase comes from rejecting the President’s proposal to cancel the Stratospheric Observatory for Infrared Astronomy (SOFIA), a telescope mounted on a Boeing 747 aircraft that is funded at $70M. They will not have enough funding to implement all of the desired upgrades to the telescope though. The budget also includes $50M for the Wide-field Infrared Survey Telescope (WFIRST), which is expected to launch in the early 2020s. The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is funded as expected (under its $8B total cost cap) and is on schedule for a 2018 launch. The Planetary and Heliophysics Divisions also saw budget increases over last year, including $100M for a mission to Jupiter’s moon Europa (which might harbor life) and at least $100M for the high-priority Mars 2020 rover mission. Nonetheless, NASA may not be able to advance its smaller Discovery-class space probes and New Frontiers missions as quickly as hoped.

For detailed coverage of NASA’s budget, check out Josh Shiode of the American Astronomical Society and Marcia Smith at SpacePolicyOnline.

National Science Foundation

The budget includes an increase of 2.4% ($172M) to the NSF’s budget, and according to Shiode, this is partly thanks to efforts by the retiring chairman of the House Commerce, Justice, Science and Related Agencies (CJS) Appropriations Subcommittee, Representative Frank Wolf. There will be a 2.2% increase over current funding to research and related activities across the six directorates, while there will be flat funding for research equipment and facilities construction, including expected funding for the Daniel K. Inouye Solar Telescope (DKIST) and Large Synoptic Survey Telescope (LSST). I’m particularly looking forward to the LSST, which will be located in northern Chile and is planned to have “first light” in 2019. It will observe millions of galaxies and will be a successor to the very successful Sloan Digital Sky Survey (SDSS).

Department of Energy

The DOE’s Office of Science received approximately flat funding at $5.1B in the budget bill. The Cosmic Frontier program, which includes dark matter and dark energy research, will see a $6.4M (6.5%) increase in its budget, however. The bill reverses potential cuts to nuclear fusion research, and it importantly threatens “to withhold the US contribution to ITER, the multibillion-euro international fusion consortium [based in southern France], if the beleaguered project, which is 11 years behind schedule, does not implement management changes,” according to an article in Nature.

Education

The budget bill has multiple provisions affecting education. It includes legislation for a program that would allow students without a high school diploma to get federal student aid as long as they are enrolled in college-level career pathway programs. It also unfortunately includes a $303M cut in discretionary funding from the Pell Grant program this year, according to Inside Higher Ed. The budget will increase funding to $530M supporting institutions that serve percentages of minority and low-income students through Title III funding.

NASA will receive $42M for education and public outreach, but the agency may have to shuffle its education budget, which has traditionally funded education activities in conjunction with every scientific mission. The NSF will receive $866M for education and human resources, including funding for its Graduate Research Fellowships.

Environmental Protection Agency

I don’t have good news about the EPA, which will now be funded at $8.1B this year, its smallest budget since 1989 according to Scientific American. The bill also includes some environment-related riders in the EPA and other agencies such as the following: President Obama will not be allowed to fulfill his pledge to contribute $3B to the United Nations Green Climate Fund; the Export–Import Bank will lift its ban on loaning funds to companies to build coal-fired power plants overseas; and the Transportation Department will not be able to fund most of its current light-rail projects.

Other Agencies

Finally, there are a few other agencies with science-related budgets. The National Institutes of Health (NIH) will receive essentially flat funding (0.3% increase). It will receive larger increases for cancer research, Alzheimer’s research, and the BRAIN Initiative on neuroscience. The bill also includes a multibillion dollar Ebola response that goes primarily to the NIH. The National Oceanic and Atmospheric Association (NOAA) will get flat funding, including full funding for its GOES-R and JPSS satellites for meteorological and polar research. The National Institute of Standards and Technology (NIST) received flat funding as well, and the US Geological Survey received a small increase.

This will be my last post until next year, so happy solstice (or Shabeh Yalda, as the Persians say) and happy holidays!

Implications of the Midterm Election for Science

Just to be clear, I should distinguish between my statements as a scientist and my views on “science policy” and politics. This post is more about the latter, and I’m interested to hear your thoughts and views about these issues too.

The US midterm elections never receive as much media attention and as high turnouts as presidential ones. For family reasons or work reasons (because Election Day is not a holiday in the US) or because of disillusionment or apathy or other reasons, typically more than 60% of eligible voters do not vote during midterm elections.

The midterms on Tuesday (November 4th) are nonetheless important. In particular, science-related issues—especially climate change and Ebola—are playing significant roles in political campaigns and referenda on ballots around the country. In addition, the next (114th) Congress will shape federal budgets for basic and applied research in science, STEM (science, technology, engineering, and math) education, and public outreach, as well as setting budget priorities that could remain in place for years to come.

The Budget Situation

Developing and implementing federal budgets take considerable time and effort. The President and Office of Management and Budget first propose a budget for the next fiscal year (FY), then Congressional appropriations committees negotiate to develop their own budget bills, and then the final bill is executed by the federal agencies. Annual budgets for agencies such as the National Science Foundation (NSF), National Aeronautics and Space Agency (NASA), National Institutes of Health (NIH), and Environmental Protection Agency (EPA) can fluctuate throughout the budget-making process. For example, the House gave the NSF a 2.1% higher budget than the Senate Appropriations Committee, while both chambers rejected the President’s proposal to cut the Stratospheric Observatory for Infrared Astronomy (SOFIA) through NASA. The House and Senate appropriators also have different funding levels for the National Oceanic and Atmospheric Administration (NOAA), which include possible cuts to climate research. Note that federal science budgets also include the social and political sciences, which are funded through the NSF. It took forty years since the establishment of the NSF to include them under its aegis, and this is still contentious; an attempt in the House Science Committee to reduce their funding levels with an amendment earlier this year failed to pass.

Budget negotiations for FY 2015 were not completed when the House and Senate could not come to an agreement on the appropriations bills this summer. With the election approaching, Congress passed a three-month stopgap measure starting in September known as a continuing resolution (CR) to avert another government shutdown. The shutdown in 2013 had a disruptive impact on scientific researchers, students, and agency employees. For example, 99% of NSF’s workforce was furloughed, NASA sent 98% of its employees home without pay or access to their work, and NIH put 73% of its employees on enforced leave and suspended new clinical trials. Fortunately, this experience was not repeated.

Nevertheless, FY 2015 has just begun, and the CR means that the budgets continue on autopilot until December, and scientists hope that by then the new Congress will successfully finalize a budget bill for the rest of the fiscal year. Until a budget is passed, agencies continue to fund their programs at FY 2014 levels, which has the result that “sequestration” spending reductions from the Budget Control Act of 2011 will remain in place. If Congress does not make an agreement to reduce or remove these budget constraints, discretionary spending will return to sequester levels in FY 2016 and will remain there for the rest of the decade, meaning continued challenges for investment in science and technology. Considering that mandatory spending, which includes Social Security and Medicare, will continue to grow relative to the discretionary budget (see this CBO report), future budget negotiations will become even more difficult to resolve.

Education

STEM education and public outreach will be affected by the post-election Congress’s priorities as well. A couple months ago, Sen. J. Rockefeller (D-WV), introduced the America COMPETES Reauthorization Act. According to the Association of American Universities, the bill calls for “robust but sustainable funding increases for the [NSF] and National Institute for Standards and Technology” (NIST), and it supports each agency’s effort to improve education of future STEM professionals. However, support for the bill has not been sufficiently bipartisan to reauthorize it yet. Depending on the post-election environment, the Higher Education Act (HEA) reauthorization, introduced by Sen. T. Harkin (IA) might be more likely to pass. The HEA governs federal student aid, and considering that at least 70% of US university graduates are burdened with debt, this is clearly important. The bill would provide some relief for students by increasing state contributions to public universities and thereby reducing tuition fees, supporting community colleges, and expanding programs that allow high school students to earn college credits.

Election Campaigns and Ballot Measures

In addition to these science research and education issues, science policy is also relevant in many midterm election campaigns and ballot measures. Climate change, energy policies, and the environment are the most prominent science policy issues and are playing a big role in campaign ads. With increased flooding in the eastern US and the ongoing drought and wildfire conditions in the southwest—motivating a $7.5 billion water bond in California (see this PPIC post for info)—global warming concerns many voters. However, a partisan divide persists, depending how poll questions are framed. Hydraulic fracturing (fracking) and the Keystone XL remain controversial as well, and anti-fracking measures were nearly included on Colorado and Michigan’s ballots. In addition, in another science policy issue, voters in Colorado and Oregon will decide on the labeling of foods containing genetically modified crops (GMOs).

Moreover, climate change is a major campaign issue in the race between Rep. Scott Peters (CA-52), and Carl DeMaio in San Diego County. This tossup race has gained national attention, and though both candidates acknowledge the science behind climate change, DeMaio has stated that more research is needed. (Both candidates recently visited us at UC San Diego.) Importantly, Peters serves on the House Science Committee, and committee members Alan Grayson (FL-9) and Ami Bera (CA-7) are in close races as well. The post-election House Science Committee could change shape. Climate change also plays a role in the election between Sen. Mark Udall (CO) and Rep. Cory Gardner and in the one between Gov. Rick Scott (FL) and Charlie Crist.

In any case, science policy issues are clearly important in this election, which will have important implications for investment in science research and education.

[Note that part of this post was adapted from an op-ed that I submitted last month to the Journal of Science Policy & Governance.]

People’s Climate March in San Diego

Yesterday afternoon was hot, sunny, and dry in southern California, and it was as great a time as any to draw attention to climate change and demand action on it. I was one of 1,500 people who participated in the People’s Climate March and rally in San Diego, which started at City Hall and the Civic Center, went down Broadway past the train station, and ended at the County Administration Park.

09.21.14_civic_center_crowd_t670_t658

It was exciting and inspiring to be involved in what may have been the largest climate protest in history. At least 300,000 people participated in the march in New York, where the UN climate summit is taking place. According to a speaker for SanDiego350, which was one of the groups organizing the local events, there were marches and rallies in over 3000 cities around the world. They were also widely reported in the media, for example in the New York Times, LA Times, Guardian, and Democracy Now. I’m not a good photographer, so I grabbed the photo above from the SD Reader and the NYC photo below came from the Guardian. I’m sure there were a few differences between the people participating in the SD and NYC protests, as I saw many people wearing flip-flops, heard chants of “¡Si Se Puede!”, and saw a few Mexican wrestler masks too.

63a815be-5a7d-481b-8ac5-1aec638c70e6-680x1020

From what I could see, it was a very diverse crowd in terms of gender, race, class, and age. Climate change is now more than just an environmental issue—many people from unions, religious groups, and students and teachers attended too. People held signs and yelled chants saying a variety of things: demands for clean energy, green jobs, climate justice, and an end to fracking were common. As I mentioned in my previous post, many Californians are concerned about drought and water policies too, and I saw a few signs about these issues as well. Although we can see widespread support for action on climate change, it’s clear that conservatives and Republicans didn’t show up; climate change has become an increasingly partisan issue in the US over the past few years.

Organizers had great speakers and musicians at the beginning, middle, and end of the march. Many political leaders attended, including Rep. Susan Davis, the Congressional representative for our district. Speakers included: Todd Gloria, City Council president and former interim mayor, who gave a rousing speech to kick off the march; Nicole Capretz, Director of Environmental Policy for the city, who cited labor, women’s rights, and civil rights movements as inspiration; Monique Lopez, Environmental Health Coalition advocate, and City Council member David Alvarez. (More details about the speakers are here.)

Capretz and Gloria outlined their Climate Action Plan, which includes ambitious goals in five areas: energy and water efficient buildings; clean and renewable energy; biking, walking, and transit; zero waste; and climate resiliency. From what I can tell, their emphasis is on the first three prongs. The plan would cut San Diego’s greenhouse gas emissions by 15% by 2020 and nearly half by 2035. More than half of San Diego’s GHG emissions come from transportation, which is why investment in public transit, bike- and pedestrian-friendly areas, incentives for car-pooling, and other related measures are important. However, the plan already faces some resistance from business groups, who only approve of voluntary, incentive-based programs (but not mandatory measures) to get property owners to pursue upgrades to improve buildings’ water and energy efficiency. Mayor Kevin Faulconer is preparing to release his own version of the plan. If it’s watered down, I think he can expect San Diegans to organize more climate marches in the future.

[Although I’m a scientist and always try to lay out the facts in my blog posts, I want to be clear that I’m speaking my personal opinions here.]

Californians and the Environment

The Public Policy Institute of California (PPIC), a nonprofit, nonpartisan thinktank based in San Francisco, recently conducted a survey of Californians’ views of environmental issues. This is particularly important in light of the ongoing drought in the southwest and the upcoming elections in November. According to the report (available in PDF format), the results are based on the responses of 1,705 adult residents throughout California, interviewed in English and Spanish by landline or cell phone, and they’re estimated to have a sampling error of 4% (at the 95% confidence level). I’ll describe what I see as their most interesting results, and if you want more information, I encourage you to read the report.

Global warming: A strong majority say they are very concerned (40%) or somewhat concerned (34%) about global warming. Approximately two thirds of Californians (68%) support the state law, AB 32, which requires California to reduce its carbon emissions to 1990 levels by 2020, but the partisan divide (Democrats at 81% vs Republicans at 39%) has grown on this issue. 80% of Californians say that global warming is a very serious or somewhat serious threat to the economy and quality of life for California’s future. Only 45% of people are aware at all about the state’s cap-and-trade system, which took effect in 2012, but after being read a brief description, Californians are more likely to favor (51%) than oppose (40%) the program. Under a recent agreement between the governor and legislature, 25% of the revenues generated by the cap-and-trade program will be spent on high-speed rail, 35% on other mass transit projects and affordable housing near transit, and the rest for other purposes.

graph

Energy policies: overwhelming majorities of adults favor requiring automakers to significantly improve the fuel efficiency of cars sold in the U.S. (85%) and increasing federal funding to develop wind, solar, and hydrogen technology (78%). Strong majorities support the requirement that oil companies produce cleaner transportation fuels and the goal that a third of California’s electricity come from renewable energy sources. But residents’ support declines significantly if these two efforts lead to higher gas prices or electricity bills. (This is unfortunate, because gas and oil companies are heavily subsidized in the US, and maybe our gas and electricity bills are too low.) Most residents (64%) oppose building more nuclear power plants, as they have since the Fukushima disaster.

The survey includes other contentious issues: 54% of Californians oppose hydraulic fracturing, or fracking, for oil and natural gas extraction. But a majority (53%) support building the Keystone XL pipeline.

Water policies: Asked about some of the possible effects of global warming in California, majorities say they are very concerned about droughts (64%) or wildfires (61%) that are more severe. 35% say that water supply or drought is the most important environmental issue facing the state today (which is 27% higher than the fraction in a 2011 survey), and this is the first environmental survey in which air pollution was not the top issue. In another measure of concern about drought, strong majorities of residents (75%) say they favor their local water districts requiring residents to reduce water use. The CA legislature is discussing a $11.1 billion state bond for water projects that is currently on the November ballot, and a slim majority of likely voters would support it (51% yes, 26% no).

If you’re interested, the PPIC has useful information and publications on water policies and management of resources: see this page and this blog post series. Water policy analysts argue that in the Central Valley, where most agricultural water use occurs, the failure to manage groundwater sustainably limits its availability as a drought reserve. In urban areas, the greatest potential for further water savings lies in reducing landscaping irrigation—a shift requiring behavioral changes, not just the adoption of new technology. Finally, state and federal regulators must make tough decisions about how and when to allocate water during a drought: they must balance short-term economic impacts on urban and agricultural water users against long-term harm—even risk of extinction—of fish and wildlife.

People’s Climate March

This is a different topic and has nothing to do with the survey, but I want to use this opportunity to plug the People’s Climate March, which will be taking place on Sunday. (This website can direct you to events in your area.) One of the biggest marches and rallies will be in New York City, where the UN climate summit will soon be taking place. Even Ban Ki-moon will be participating! For San Diegans, you can find information about Sunday’s downtown events here. Californians also organized a “People’s Climate Train” to take activists and participants by train from the Bay Area through Denver and Chicago to New York, where they’ll be arriving tonight. Finally, I recommend reading this well written piece by Rebecca Solnit on Dr. Seuss’s The Lorax and the need to raise our voices on Sunday.

Journalism and Science Groups Criticize EPA’s Policy Muzzling Science Advisers

As reported by the Associated Press and The Hill, a coalition of journalism and science groups are criticizing the US Environmental Protection Agency (EPA) to end a policy of restricting independent science advisers from contacting and communicating with media outlets, Congress, and others, without permission. The organizations include the Union of Concerned Scientists (UCS), Society of Environmental Journalists (SEJ), American Geophysical Union, Society of Professional Journalists, Society for Conservation Biology, Investigative Reporters and Editors, and Reporters Committee for Freedom of the Press. (Full disclosure: I am a UCS member and obtained some of my information from them.)

epa_logo

In a letter sent to the agency last week, they said that the new policy

requir[es] advisory committee members who receive requests from the public and the press ‘to refrain from responding in an individual capacity’ regarding issues before the committee. The policy requires all requests…to be routed through EPA officials. This prevents many of our nations top independent environmental science experts from sharing their expertise, unfiltered, with the public…The new policy undermines EPA’s efforts to increase transparency. It also contradicts the EPA’s new scientific integrity policy…[It] only reinforces any perception that the agency prioritizes message control over the ability of scientists who advise the agency to share their expertise with the public. On July 8, 38 journalism and good government organizations wrote the president expressing concern about ‘the stifling of free expression’ across many agencies, including the EPA.

The language of the policy is sufficiently vague that it would be easy for a scientist to interpret it such that she or he can’t speak publicly about any scientific issue under consideration. In addition, as pointed out by Andrew Rosenberg, scientists who work for the EPA also face barrier in communicating with the public.

What are the implications of this and why is it important? As the letter points out, this is clearly related to the issue of scientific integrity. We need scientists to serve on advisory committees, work with agencies and policy-makers, and speak transparently about their work and expertise, but such policies will discourage some from participating and will make the EPA less democratic. Government agencies, journalists, and the public deserve access to independent advice and free speech of scientists. (However, we scientists should be careful about speaking about issues beyond our expertise.) That way agencies can make informed decisions when developing or reforming relevant policies and regulations, and journalists and the public can form their own opinions about them as well.

In an update on the situation, the EPA Chief of Staff Gwendolyn Keyes-Fleming responded to say that their Science Advisor, Dr. Bob Kavlock, would review the matter and engage with people in the organizations involved. Let’s hope that the dialogue results in changing the policy.

600px-US-DeptOfEnergy-Seal.svg

Finally, in recent related news, political scientist James Doyle says that he was fired from the Department of Energy’s (DOE’s) Los Alamos National Laboratory (LANL) in New Mexico after publishing a scholarly article questioning US nuclear weapons doctrine. They claimed that the article, criticizing the political theories behind the nuclear arms race and a defense of President Obama’s embrace of a nuclear weapons-free future, contained classified information. (We should note though that unfortunately the DOE’s policy on scientific integrity is much shorter and may be more restrictive than the EPA’s.) I’ll keep you updated on this situation, and time permitting, I may write about it further in another post.

Will Climate Change Embolden the Environmental Justice Movement?

[I’m cross-posting this, which was originally posted on the Union of Concerned Scientists blog. Thanks to Melissa Varga for editing assistance.]

We are at an historic anniversary: the Civil Rights Act was enacted fifty years ago on the 2nd of July, 1964. According to the legislation, all persons “shall be entitled to the full and equal enjoyment of…any place of public accommodation, as defined in this section, without discrimination” based on race, color, religion, or national origin. It ended unequal application of voter registration requirements and racial segregation in schools, at the workplace and by facilities that served the general public. (Another milestone, Brown v. Board of Education, occurred sixty years ago.) The Civil Rights Act was initially about the important symbolism of inclusion. But what does this have to do with climate change?

King_MarchonWashington

We still need to address what sociologists refer to as institutionalized inequality and injustice. Randall Kennedy in Harper’s magazine asks, why has the struggle against racism been more effective in public accommodations than in schooling, housing, employment, and the administration of criminal justice? “What is the value,” the civil rights activist Bayard Rustin once asked, “of winning access to public accommodations for those who lack money to use them?” To address structural injustices and inequities, more action is required.

“Environmental justice” is meant to address a critical area where such injustices remain. Attorney General Eric Holder said in a speech at the Environmental Protection Agency in 2011 that Dr. Martin Luther King Jr. “plant[ed] the seeds of the environmental justice movement” and that environmental justice is “a civil rights issue.” The EPA defines environmental justice (EJ) as the “fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.” EJ often refers to water and air pollution, soil contamination, toxic hazards, power plants, industrial facilities, and environmental degradation that preferentially affect residential areas and communities with people of a particular race, ethnicity, or economic status. It also refers to social movements that have, with some success, attempted to rectify this.

EJ is also particularly relevant to climate change. Issues of “equity, justice, and fairness” were referred to in the latest IPCC report, and as argued by Union of Concerned Scientists Senior Climate Economist Rachel Cleetus in an earlier post, EJ should be considered as a major factor in President Obama’s Climate Action Plan. We are already seeing extreme climate events, including heat waves, floods, wildfires, and droughts, and poor coastal communities are particularly vulnerable to storm surges, coastal flooding, and rising sea levels. Although dangerous weather events appear to occur randomly, some people are more vulnerable than others and some receive more effective aid during cleanup and recovery. (See the book “Race, Place, and Environmental Justice after Hurricane Katrina”, edited by Robert Bullard and Beverly Wright.) Sometimes environmental laws are insufficient and federal agencies don’t take sufficient steps to protect workers and residents, and certainly there is room for improvement.

A few weeks ago, I attended a meeting on Climate Change Resilience and Governance in Washington, DC, which was organized by the American Association for the Advancement of Science (AAAS). The speakers included Jalonne White-Newsome, a former UCS Kendall Science Fellow now a policy analyst for WE ACT for Environmental Justice. She talked about how currently EJ communities are not engaged in the process, and the failure to mobilize the majority of Americans who want action on climate change is partly due to the fact that not everyone is part of the conversation. Many black, Latino, and Native American communities, as well as working class white communities, live closer to various polluting industries, landfills, fracking infrastructure, etc. than others, but they don’t have enough information about what they can do about it, how they can communicate with the authorities, or how to receive the aid they need. (For more on this meeting, see my blog post on it).

Scientists, activists, and policy analysts are now thinking about and addressing the causes and effects of climate change. Although we want to substantially reduce carbon dioxide emissions and avoid the worst of global warming, climate change is already happening. Throughout different regions of the US, we can expect more frequent and extreme droughts, floods, and heatwaves in the future (see the overview of the National Climate Assessment.

This is where climate adaptation and resilience come in, and this is what people are actively working on these days. For example, people on the top floors of poorly cooled buildings in dense urban areas are among the most vulnerable to heat waves, and simple solutions like white-painted roofs (see below) can save many lives. Scientists and medical experts are also studying the cumulative impact to the health of vulnerable populations, for example following natural disasters (such as hurricanes or floods) that also damage the social and physical infrastructure necessary for resilience and emergency response. Afterward, federal agencies need to be ready to help local organizations and communities with reconstruction. To address future water shortages and drought impacts, Congress authorized the National Integrated Drought Information System in 2006, which identifies drought-sensitive regions and manages drought-related risks and which involves the coordination of federal, state, local, regional, and tribal partners.

white-roofs

There is certainly plenty more work to do on climate mitigation and adaptation, and environmental justice should be a key element of it. As we look back on all we’ve accomplished since the Civil Rights Act was passed fifty years ago, let’s keep working to eliminate injustice and inequality as we prepare for the great challenge of the 21st century—climate change.

Climate Change is an Environmental Justice issue

In a previous blog post, I introduced the concept of environmental justice (EJ), which refers to the fair treatment of people regardless of race or class with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. I’ve also previously written about climate change here and about some efforts to address it here. Now my point here that climate change is an EJ issue, especially because anthropogenic greenhouse gas emissions (GHGs) have been primarily produced by people in wealthier countries, while people in poorer countries and regions will likely bear the brunt of the effects of climate change, including rising sea levels, drought, and access to food staples.

The new report from the Intergovernmental Panel on Climate Change (IPCC) was just released a week ago, soon before Earth Day. (You can read news coverage of the report in the Guardian, NY Times, and Atlantic.) The IPCC report was produced by 1,250 international experts and approved by 194 governments, and it is the last of three reports to assess climate research conducted since 2007. The authors argue that only an intensive push in the immediate future can limit climate change to less than catastrophic levels, but lowering costs of alternative energies have made transitioning on a mass scale practical and affordable. Avoiding (the worst of) climate change will be less costly than attempting to adapt to it later with unpredictable geoengineering technologies. The report also discusses “co-benefits“: for example, efforts to reducing air pollution (including GHGs) would improve public health and save millions of lives, balancing the cost of reducing the emissions. The report states that putting a price on GHG emissions, such as through carbon taxes or emission permits (which I’ll write about in a later post), would help to redirect investment toward more climate-friendly technologies and away from fossil fuels.

It’s also interesting to see what was not included in the IPCC report. For example, rich countries (including the US) pushed to remove a proposed section that called for hundreds of billions of dollars of aid per year to be paid to developing countries. The report does refer to “issues of equity, justice, and fairness [that] arise with respect to mitigation and adaptation,” but these are issues that should be further discussed and addressed. For example, we are already seeing extreme climate events, including heat waves, floods, wildfires, and droughts, and poor countries and small island nations are particularly vulnerable to storm surges, coastal flooding, and rising sea levels.

In order to mitigate climate change, the report views favorably the cutting energy waste and improving efficiency and the shift toward renewable energies, especially the zero-emission sources like wind and solar, whose costs are dropping and becoming competitive. Wealthier countries can lead these efforts, and they could fund low-carbon growth in poorer countries, which are unfortunately expanding the use of coal-fired power plants. Archbishop Desmond Tutu has even advocated for an anti-apartheid style campaign against ­fossil fuel companies to respond to the “injustice of climate change.” On that note, I’ve noticed that the term “climate justice” has become increasingly common.

Many vulnerabilities to climate change are visible in the US as well (see this UCS blog), and much more can be done to work toward climate change mitigation and adaptation. In addition, unfortunately, climate change has not yet been connected to EJ in US policy, in spite of the Executive Order signed by Pres. Bill Clinton twenty years ago, which instructed all federal agencies to consider impacts on people of color, the elderly, and those of low-income when crafting new policies and rules. (See this post by post by Robert Bullard, one of the leaders of the EJ movement.) The Environmental Protection Agency’s new Plan EJ 2014 briefly mentions climate change, and at least this is a start.

In order to mobilize people, governments, and institutions to active address climate change, we should discuss how climate change issues are framed. A week ago, I attended an interesting political science talk by Sarah Anderson, professor of environmental politics at UC Santa Barbara. (By the way, I have to admit that the political scientists at UCSD have more comfy chairs than us astrophysicists. We’ll have to work on that!) She mentioned the “moral foundations theory” (proposed by Jonathan Haidt; and Lakoff & Wehling): political liberals construct their moral systems primarily upon two psychological foundations (fairness/justice and harm/care), while conservatives’ moral systems are also based on others (including ingroup/loyalty, authority/respect, purity/degradation). So if the goal is to address climate change–which may be one of the greatest environmental and socioeconomic problems of our generation–then we should try to appeal to everyone, not just those identified as liberals or leftists. To do so, maybe we need to use additional frames, such as by emphasizing the importance of avoiding environmental degradation and the potential economic benefits of mitigating climate change.

Finally, political scientists often focus on the workings of the state and on policies and regulations, but there are many important actors outside the state, especially among social movements and civil society. Fortunately, organized opposition to the Keystone pipelines and fracking, for example, have made these climate change issues more pressing for policy-makers.
Harvard poli sci professor Theda Skocpol (quoted in a New Yorker article) criticizes the tactic of mobilizing support exclusively through the media; instead, she argues, “reformers will have to build organizational networks across the country, and they will need to orchestrate sustained political efforts that stretch far beyond friendly Congressional offices, comfy board rooms, and posh retreats.” Perhaps what the environmental movement need are more “federated structures,” which have national leaders to interact with political officials in the White House and Congress as well as local chapters which regularly meet (and organize rallies or teach-ins) to develop their larger goals.