You may have seen some dramatic headlines in the news last week: “‘Extreme solar storm’ could have pulled the plug on Earth” (Guardian); “Solar ‘superstorm’ just missed Earth in 2012” (CBS); “How a solar storm two years ago nearly caused a catastrophe on Earth” (Washington Post blog). Also see this Physics Today article, which was published online today and reviewed the press attention to the event.
Though journalists and editors often write hyperbolic headlines, the danger from solar storms is very real, though extreme ones are as rare as massive earthquakes. When you think of solar flares and eruptions threatening humans, it may evoke Stanislaw Lem’s Solaris or the Doctor Who episode 42, but at least our sun isn’t sentient (as far as we know)!
The solar storm in question occurred two years ago on 23 July 2012, and the media reported on it following a NASA public-information release and accompanying four-minute YouTube video (see below). It seems that those of us who live on Earth and use electronic technology were lucky that this was a near miss. The threat of solar storms is also relevant to “space security”, which I wrote about in a previous post.
The paper itself was published last fall in the Space Weather journal by Daniel Baker, of the Laboratory for Atmospheric and Space Physics at the University of Colorado, and six colleagues from NASA, Catholic University, and the University of New Hampshire. Its full title is “A major solar eruptive event in July 2012: Defining extreme space weather scenarios,” and here is their abstract (abridged):
A key goal for space weather studies is to define severe and extreme conditions that might plausibly afflict human technology. On 23 July 2012, solar active region 1520 (141°W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be 2500 ± 500 km/s [5.6 million miles/hr!]… In this paper, we address the question of what would have happened if this powerful interplanetary event had been Earthward directed. Using a well-proven geomagnetic storm forecast model, we find that the 23–24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the twentieth century…This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.
The solar storm missed the Earth but hit NASA’s STEREO-A spacecraft, which was safely outside the Earth’s magnetosphere and was able to measure and observe the approaching CME, a billion-ton cloud of magnetized plasma. “I have come away from our recent studies more convinced than ever that Earth and its inhabitants were incredibly fortunate that the 2012 eruption happened when it did,” says Baker. “If the eruption had occurred only one week earlier, Earth would have been in the line of fire.” According to the simulations in their follow-up paper by Chigomezyo Ngwira et al., had the 2012 CME hit the Earth, it could have produced comparable or larger geomagnetically induced electric fields to those produced by previously observed Earth-directed events and would have put electrical power grids, global navigation systems, orbiting satellites, etc. at risk.
Pete Riley, a physicist at Predictive Science Inc., published a paper in 2012 in the same journal entitled “On the probability of occurrence of extreme space weather events.” He analyzed historical records of solar storms, and by extrapolating the frequency of ordinary storms, he calculated the odds that a Carrington-class storm (which occurred in 1859) would hit Earth in the next ten years is between 8.5 and 12%!
NASA has calculated that the cost of the 2012 CME hitting the Earth would have been twenty times the devastation caused by hurricane Katrina—on the order of $2tn. The storm would have begun with a solar flare, which itself can cause radio blackouts and GPS navigation failures, and then it would have been followed by the CME a few minutes later, potentially causing widespread havoc with global technological infrastructure. Anything that uses electricity, including water supplies, hospital equipment, and radio and television broadcasts could be shut down. How do we prepare as a society for an event like that?