The Return of Persian Science

Like many multiethnic multicultural people, I’ve had difficulty coming to terms with my multifaceted yet fragmented identity. As a half-Iranian in the midst of Americans, I’ve lacked key cultural influences and a US-centric worldview, while in Iran I feel like an outsider at times.

I’ve had the wonderful opportunity to visit twice so far—once as a teenager and once more recently as a physicist. Each time, I’ve been very observant in the hopes of better understanding an important side of myself. I’ve explored its fascinatingly unique cities, including the massive capital, Tehran, and its huge bazaars; Esfahan, with its spectacular architecture and Jahan Square, a national landmark; and Shiraz, with its tombs of poet giants, Hafez and Saadi. I’ve also looked for signs of how the country appears to be changing as it becomes more open to the international community.

Me and Sohrab Rahvar outside the physics department of University of Sharif, May 13, 2008. (Photo: Forood Daneshbad.)

Me and Sohrab Rahvar outside the physics department of University of Sharif, May 13, 2008. (Photo: Forood Daneshbad.)

At the invitation of Sohrab Rahvar, physics professor at the University of Sharif, I gave two seminars, one there and another at the University of Tehran. I presented postdoctoral research I was doing at the Max Planck Institute for Astronomy in Heidelberg, Germany, investigating connections between observations of galaxies and theories of dark matter.

I introduced myself in Farsi and gave the talks in English—the usual second language there. I had learned Farsi from my mother in the US, and I had a pretty good accent too, but I lacked the vocabulary to communicate astrophysics in the language. I found out though that, for example, like in English, Iranians use the same word for a “cluster of galaxies” and a “cluster of grapes”.

After my presentations, the students asked challenging questions about my work—both in English and Farsi. One student asked me for advice, as she was preparing a job application for the Max Planck Institute for the Science of Light, near Nuremberg.

For all their talent and promise, students and scientists like her face many difficulties under the tough nuclear-related sanctions imposed on Iran. Many have a hard time traveling to conferences, obtaining student visas, or meeting with international colleagues. Even the Iranian physicists who played an integral role in the CERN Large Hadron Collider collaboration ran into restrictions. Obtaining professional journals and lab equipment can be prohibitively expensive for Iranian scientists too. Perhaps for these reasons, many scientists shifted to theoretical rather than experimental work; for example, I met surprisingly many string theory researchers there.

Science, medicine and mathematics have a long and glorious history in Iran and Persia. Six centuries before Galileo, the physicist Biruni was the first scientist to propose that the speed of light is finite. Ibn al-Haytham developed the field of optics, Ibn Sina (known in the West as Avicenna) made important contributions to medicine and philosophy, and the 11th-century poet Omar Khayyam—author of The Rubaiyat—also happened to figure out the principles of algebra and devised an accurate solar calendar. Observatories proliferated throughout Persia then, and precise planetary records collected at Maragheh observatory, in what is now northwestern Iran, likely influenced Copernicus’s hypothesis that the Earth revolves around the sun.

A thousand years later, Iran is a nation of 78 million people, almost as populous as Germany. More than half the population is under the age of 35—many of them politically active—and male and female young adults have a literacy rate of 97 percent. According to the Institute of International Education, 10,200 Iranian students and nearly 1,400 scholars studied at US colleges and universities, making it the 12th leading country to send students to the US. In 1979, however, more than 51,000 students enrolled in U.S. universities—the biggest source of overseas students. The large Iranian diaspora have been known for their accomplished work in science and other fields, but according to the International Monetary Fund, this has fueled the highest “brain drain” among developing and developed countries, with 150,000 to 180,000 educated people emigrating every year. But now that may change.

As the international sanctions will be gradually lifted, students and scientists in Iran and their colleagues abroad have much to look forward to. As part of the historic nuclear deal, the uranium enrichment facility in Fordo, between Tehran and Esfahan, will be converted into an international nuclear physics and technology center.

Iranians have other plans in the works too. Within the next 4 or 5 years, astronomers are working on building a new observatory, a 3.4-meter optical telescope, on a 12,000-foot peak in central Iran at a site comparable to Hawaii’s Mauna Kea. Once it’s completed, the international community will be invited to use up to 70 percent of the observing time to study planets outside the solar system, gamma-ray bursts, distant galaxies and elusive dark matter. I hope to see the telescope the next time I travel there.

In addition, Iranian physicists plan to construct an ambitious $300 million “synchrotron” particle accelerator. Like the telescope, it would be difficult to complete on schedule, if at all, were the sanctions not removed. Iranian scientists and their international partners excitedly anticipate new experiments on a wide range of subjects, from research on biological molecules to advanced materials. “Big Science” is not limited to the West.

Other sciences also look forward to a changing environment, as described in a Science special issue on science in Iran.

Rahvar seems optimistic about the post-sanctions situation. “We hope to reestablish our previous scientific relations and make new collaborations,” he says. It will take time, but the prospect of an improving research climate in Iran could herald a new era of scientific achievements in the country, especially in the physical sciences.

I think that a more open political environment in Iran won’t just invigorate science in the country and in the international community; with time, it will stimulate a more open exchange of ideas and cultural understanding. I’m proud of my Iranian blood, and I excitedly await Iran’s renewal and resurgence.

[I’m cross-posting this from the Last Word on Nothing blog, where this was originally published. Thanks to Jessa Gamble and other LWON members for their editing assistance and helpful advice.]

Finding Earth 2.0

In honor of Carl Sagan’s birthday, I figured I’d write a few thoughts I had about a fascinatingly unique conference I attended in the Bay Area last week. It was called “Finding Earth 2.0,” and it was organized by 100 Year Starship, a group partially funded by NASA and the Defense Advanced Research Projects Agency (DARPA) to plan for interstellar travel within the next century.

A potential spacecraft called Icarus Pathfinder would be powered by electric propulsion engines called VASIMR, taking it out to 1,000 times the distance between the Earth and Sun. (Credit: NBC News)

A potential spacecraft called Icarus Pathfinder would be powered by electric propulsion engines called VASIMR, taking it out to 1,000 times the distance between the Earth and Sun. (Credit: NBC News)

Like you might imagine such an organization, the conference speakers and attendees appeared rather eclectic, including astronomers and planetary physicists and science journalists—whom I’m usually hanging out with—as well as aerospace engineers, science fiction writers, business people, teachers, space enthusiasts, and many others. But everyone displayed an active interest in exploring the distant universe and imagining what our future might be like.

Dr. Mae Jemison, the first woman of color in space, heads the 100 Year Starship, and she gave a plenary talk. She pointed to many motivations people have for finding another Earth, including conundrums and challenges our planet and species face, such as limited resources, overpopulation, and our own behavior—perhaps a reference to climate change or nuclear weapons. I think we have many other compelling reasons for interstellar space exploration, but I’ve written about that here before.

I also saw many interesting perspectives and presentations about hunting for planets beyond the solar system, called exoplanets, including habitable ones or even inhabited ones. Dr. Jill Tarter, SETI (Search for Extraterrestrial Intelligence) Institute co-founder and inspiration for Sagan’s protagonist in Contact (Dr. Arroway), gave a provocative presentation on attempts to detect “technosignatures” from distant planets. (She clarified that possessing technology doesn’t imply an intelligent civilization; however, technologies serve as a proxy for intelligence.) Advanced species on these planets could be giving off radio and optical signals that could reach the Earth, but we’d have to listen really really hard to hear them. But if they had a Dyson sphere or an “alien superstructure,” that would be easier.

Other astronomers and astrobiologists talked about their work on related subjects. Margaret Turnbull, also of the SETI Institute, spoke about the “massive harvest” of planets reaped by NASA’s Kepler probe, which confirmed more than 1,000 planets in our Milky Way neighborhood and which showed that about 1 in 5 stars has a planet in the “habitable zone.” Stephen Kane (San Francisco State University) made a convincing case that we should view the habitable zone boundaries as uncertain, and that many planets in the zone would actually be not very hospitable to life. Natalie Batalha (NASA Ames) argued that we should be open-minded about planets in other systems. In one of a few relationship-like quotes, she said, “In our search for a [Earth-like] soul-mate, we may be a bit myopic.” But she was talking about the fact that we have no planets between Earth and Neptune sizes here, while according to Kepler observations, such planets seem rather common throughout the galaxy. She and others also made the point that we need detailed imaging or spectra of planetary systems to learn more about their habitability.

Niki Parenteau (SETI) talked about her efforts to study exoplanets and spot signs of life, which would likely be microorganisms and would have to cover the world to be detectable. “There’s no one smoking gun for biosignatures,” she said. “We need multiple lines of evidence.” She looks for things like biogenic gases and certain planetary surface features. But for her, water is the #1 requirement…and then Morgan Cable, a nerdy joke-telling astrochemist from Jet Propulsion Laboratory, considered a range of other liquids life might be able to develop in, including ammonia, carbon dioxide, petroleum, and liquid hydrocarbons. She ended with her main argument: “NASA shouldn’t just be looking for places with liquid water.”

Artist's illustration of NASA's NEA Scout CubeSat, which is scheduled to launch aboard the maiden flight of the agency’s Space Launch System rocket in 2018. (Credit: NASA)

Artist’s illustration of NASA’s NEA Scout CubeSat, which is scheduled to launch aboard the maiden flight of the agency’s Space Launch System rocket in 2018. (Credit: NASA)

A bunch of people gave presentations about propulsion systems, trying to push the boundaries of space travel. I thought the most interesting one was by Les Johnson, Deputy Manager for NASA’s Advanced Concepts Office at Marshall Space Flight Center. In back-to-back talks, he described current efforts to design and construct giant solar and electric sails. The sails involve ultra-thin reflective materials that are unfurled in space and use solar energy to propel a spacecraft to the distant reaches of the solar system and beyond. In an important step toward that goal, Johnson and NASA engineers are currently building a solar sail for the Near-Earth Asteroid Scout mission to transport a CubeSat “nanosatellite” to study asteroids past Mars in two years. He and his colleagues are also currently testing electric sails for fast solar wind-powered spacecraft, which—if as powerful as hoped—could even send a probe to another star.

Finally, I saw a few strange talks at the conference, and I wasn’t sure what to make of them. For example, one person spoke about the new field of “astrosociology.” He avoided giving any specifics though, even though he had been discussing “deviant” behavior, and admitted after the talk that he had envisioned studying multi-year trips transporting tens of thousands of colonists beyond the solar system. Maybe for the 200 Year Starship! Unfortunately, the speaker had not considered small missions, such as handfuls of astronauts traveling to Mars or private ventures conducting asteroid mining. I’d imagine that such small groups of people stuck together for long periods could benefit from sociological study.