Dispute Continues between Astronomers and Native Hawaiians about Thirty Meter Telescope

The conflict over Mauna Kea, where astronomers seek to build one of the world’s largest telescopes and where Native Hawaiians consider sacred ground, continues. The situation escalated in early April when protesters, defending their land and angry about their concerns being ignored, managed to stop construction on the Thirty Meter Telescope (TMT), which was planned to be built by 2024 and begin detailed observations of distant galaxies and other objects at optical-infrared wavelengths.

Native Hawaiians protesting the Thirty Meter Telescope. (Credit: AP Photo/Anne Keala Kelly)

Native Hawaiians protesting the Thirty Meter Telescope. (Credit: AP Photo/Anne Keala Kelly)

After police arrested 31 peaceful protesters for blocking the road to the summit, the new Hawaii governor, David Ige, called for a temporary halt to construction of the telescope on 7 April. “This will give us some time to engage in further conversations with the various stakeholders that have an interest in Mauna Kea and its sacredness and its importance in scientific research and discovery going forward,” Ige said. The situation remains at an impasse, and he extended the construction moratorium multiple times since then.

Artist's rendition of the planned Thirty Meter Telescope. (Credit: TMT/Associated Press)

Artist’s rendition of the planned Thirty Meter Telescope. (Credit: TMT/Associated Press)

This is only the latest battle in an ongoing dispute. (See my previous post on the TMT and protests last fall.) Astronomers have found that Mauna Kea, on Hawaii’s Big Island, is an ideal place to build ground-based telescopes because of its “seeing” statistics. Optical and infrared images are less distorted by light traveling through the atmosphere here than in many other places. Although many indigenous Hawaiians have allowed smaller telescopes to be built on the mountain, it becomes more controversial as astronomers try to construct more and larger telescopes on these protected lands which hold a great cultural importance for them. The TMT also drew opposition from celebrities of Native Hawaiian descent, including Jason Mamoa (Khal Drogo on Game of Thrones), who encouraged others to join the protests.

In addition, the protests drew more media attention than the last time, during the ground-breaking. For example, see these excellent articles by Azeen Ghorayshi on Buzzfeed and Alexandra Witze in Nature, as well as other articles in Science, New Scientist, and NPR. George Johnson also discussed the protests in the New York Times, though his column clearly sides with the TMT.

Supported by US and international universities as well as the National Science Foundation (in the form of “partnership-planning activities”), the TMT is the primary 30-meter-class telescope given priority by the US astronomical community in the 2010 Decadal Survey and highlighted in a recent National Research Council report. The other two planned telescopes in that class include the European-Extremely Large Telescope (E-ELT) led by the European Southern Observatory and the Giant Magellan Telescope (GMT) led by an international consortium of universities, both of which are under construction in northern Chile. All three telescopes are scheduled to have “first light” in the early 2020s. During the planning phase of the TMT, in addition to Mauna Kea, astronomers considered other possible locations as well, also including northern Chile and Baja California, Mexico.

The Native Hawaiian position is not monolithic, but some groups oppose the construction of the TMT and others would support it if negotiations took place in good faith and with respect and not only in Western spaces. The protesters are not a small minority, and they don’t believe that their voices have been heard. Many Hawaiians make it clear that they are not against science or astronomy; for example, the Mauna Kea Protectors “[take] a stand specifically against scientific practices that do a lot of damage—to our planet, to traditional native cultures, and to public health and safety.”

They and others make arguments on cultural, environmental, and legal grounds. If built, the TMT would dominate the landscape as it would rise 18 stories above the mountain, at an elevation of 4200m, and would disturb a large area of its slope. Moreover, the Mauna Kea summit lies within a conservation district, and therefore according to Hawaiian law certain (arguably unsatisfied) criteria must be met before construction there. Finally and most importantly, many believe that Mauna Kea is a sacred and special place that must be protected, and those beliefs have not been sufficiently respected by the authorities. (For more information, see here and here.)

The official position can be found on the TMT website and at Mauna Kea and TMT. Furthermore, Claire Max, Interim Director of UC Observatories, recently made an official statement promoting the latter as a source for information “with links to balanced news stories about the project and the protests” and that “TMT…[has] profound regard for Hawaii’s culture, environment and people.”

The TMT does have support among some native Hawaiians, and TMT authorities have set up a $1 million annual scholarship fund, named The Hawaii Island New Knowledge (THINK) Fund, which will be administered by the Hawaii Community Foundation. They have initiated a Workforce Pipeline Program in Hawaii as well. Like the Hawaiian organizations, they insist that they have the law on their side, but unlike them, they refer to the TMT as a done deal and fait accompli rather than as the subject of an ongoing dispute. According to the University of Hawaii position, “more than 20 public hearings have been held during the process and the project has been approved by then Governor Neil Abercrombie, the UH Board of Regents and the Board of Land and Natural Resources…The project has also cleared legal challenges and was upheld in the Third Circuit Court.”

From what I have seen, this dispute has generated heated debates in the astronomical community in various social media. For example, in the “Diversity in Physics and Astronomy” Facebook group (with 1700 members), astronomers made more posts and comments about the TMT and protests than about any other issue over the past few months. Astronomers expressed a wide range of views on Twitter as well, some of which were highlighted recently by Emily Lakdawalla’s Storify timeline, “Astronomy Progress is Not Universal.”

Like many astronomers and astrophysicists, I’m torn. While the TMT would be a boon for science and scientists, especially those who study galaxies, supernovae, stars, and planets, that is not the only criterion by which such a project should be evaluated. The state of Hawaii and the United States in general have a long history of colonialism and disrespect for indigenous peoples and cultures, and unfortunately the TMT risks falling onto the wrong side of that history. For now, I think that the moratorium on construction should continue and substantial negotiations should take place, and if that delays the schedule, so be it. If more native Hawaiians and organizations do not decide to support the TMT, the astronomical community should consider a different site or even terminate the telescope altogether. I realize that the cost of either action would be great, considering the huge international investment that has already taken place, but the price of desecrating native Hawaiians’ sacred and protected land is much higher.

I see strong opinions on each side, and many have distributed petitions and sought to gain more public and media support. How will astronomers and Hawaiians proceed? I hope that they will use this time to discuss the situation with respect and as equals, and they may determine whether a resolution that satisfies many eventually can be achieved.

Physics Diplomacy and the Iran Nuclear Deal

After much anticipation and cautious optimism, US, European, and Iranian negotiators managed to put together a nuclear framework in Lausanne, Switzerland earlier this month. It sets the stage for a final detailed agreement to be developed in June, which will transform Iran’s nuclear program and reduce sanctions against Iran that have weakened its economy. It appears that diplomats have nearly bridged a formidable foreign policy impasse that plagued their respective governments for over a decade.

Perhaps more importantly, a rapprochement with Iran could gradually end the country’s international isolation since 1979 following the revolution. In addition, from the perspective of Iran and some other Middle East countries, Iran’s improved relations with the US and its fair treatment under the nuclear Non-Proliferation Treaty (NPT) would make the US appear less hypocritical and less a source of instability. As an historical aside, it’s also worth noting that Iran started its nuclear program in 1967 with US help as part of Eisenhower’s “Atoms for Peace” program, and unlike Iran, three countries in the region with nuclear programs (Israel, Pakistan, and India) have not signed and ratified the NPT.

Iranian Foreign Minister Zarif and US Secretary of State Kerry in Paris on 16 Jan. 2015. (Source: US State Department)

Iranian Foreign Minister Zarif and US Secretary of State Kerry in Paris on 16 Jan. 2015. (Source: US State Department)

Important Characters

Many interesting aspects of this agreement and situation are worth discussing. First, much credit for this historic achievement goes to Iranian Foreign Minister Zarif, US Secretary of State Kerry, and EU foreign policy chief Federica Mogherini, though of course all of the negotiating teams put in a lot of hard and stressful work to make it happen. Both Kerry and Zarif now face a difficult balancing act: staying true to the framework and focusing on delivering a final agreement while navigating domestic political concerns.

The latter may reflect the different messages and emphases in the statements made by Kerry and Zarif as they returned to their home countries. For example, Zarif and President Rouhani spoke more about relief from sanctions and freedom to enrich uranium while Kerry and President Obama spoke about the limits and restrictions on Iran’s nuclear program. Furthermore, while some influential Iranian “hard-liners” like Hossein Shariatmadari criticized the deal, US senators in the Foreign Relations Committee led by Bob Corker (R-Tenn.) sought to pass a bill that would incorporate Congressional oversight but also had the potential to jeopardize diplomatic efforts.

US Energy Secretary Ernest J. Moniz and Ali Akbar Salehi, head of Iran’s Atomic Energy Organization also are important characters in this story. As pointed out in the New York Times and the Guardian, both had studied nuclear science at the Massachusetts Institute of Technology in the mid-1970s, and they became No. 2 negotiators and “atomic diplomats” during the nuclear talks. Perhaps having experienced physicists involved helped cooler heads to prevail? (I’m half-joking; remember the Manhattan Project?)

Technical Details

Let’s explore some of the technical elements of the nuclear framework. According to the International Atomic Energy Agency (IAEA) and US intelligence, Iran ended any weapons research it may have had in 2003. However, because of its power plant in Bushehr, its enrichment facilities in Natanz and Fordo, and its heave water reactor under construction near Arak, Iran has the capability to enrich weapons-grade uranium.

Only 0.3% of natural uranium is in the form of the 235U isotope. For power reactors, 3.5% enrichment is needed, while 20% is considered a threshold for “weapons-usable” uranium, and 90% enrichment is weapons-grade. Moreover, when uranium is burned, the spent fuel can be processed to extract plutonium. (And as we know from Fukushima, those spent fuel pools can be dangerous.)

Iran currently has 19,000 centrifuges for enriching uranium, and they are operating only 9,000 of them. If Iran wanted to, analysts predict that they are 2-3 months away from acquiring enough fissile material for one weapon; the US and Europe seek to prevent a nuclear “breakout” by extending this to at least one year, for a duration of at least 10 years. In addition, the international community will set up strict inspection and transparency measures that would allow it to detect any Iranian efforts to violate the accord.

For more information, see the US State Department’s detailed fact sheet and these Union of Concerned Scientists (UCS) and Science Insider articles. The UCS also recently held a webinar with directors and members of its Global Security Program: Drs. Lisbeth Gronlund, David Wright, and Edwin Lyman.

The agreement’s key provisions may be summarized as follows. The first one involves inspections and transparency: the IAEA will have access to Iran’s nuclear facilities, supply chain, uranium mines, centrifuge production, storage facilities, as well as any suspicious sites. Second, US and EU nuclear sanctions will be lifted after the IAEA verifies key steps, and they will “snap back” if necessary. Also, the UN Security Council will pass a new resolution and will set up a dispute resolution program. Third, for the enrichment, the number of centrifuges will be reduced to 6,104 IR-1s (1st-generation centrifuges), and Iran is not allowed to enrich uranium beyond 3.67% for at least 15 years or build new enrichment facilities during that time. Enrichment R&D will be limited as well, and there are plans to convert Fordo facility to an international research center. Fourth, Iran will modify the Arak research reactor to reduce plutonium production, ship spent fuel out of the country, and they are not allowed to engage in reprocessing or reprocessing R&D indefinitely.

The Fordo facility, built below a mountain, will be turned into a research lab. (Credit: IAEA Imagebank/Flickr)

The Fordo facility, built below a mountain, will be turned into a research lab. (Credit: IAEA Imagebank/Flickr)

According an interview with Seyed Hossein Mousavian, former ambassador and nuclear negotiator for Iran, the US and world powers got what they wanted: Iran has accepted the maximum level of transparency and verification, including confidence-building measures that would ensure there would be no breakout or diversion toward weaponization. For Iran, negotiators can say that their rights for peaceful nuclear technology under the NPT was accepted, and all unilateral and multi-lateral nuclear-related sanctions will be lifted.

Implications

This historic diplomatic achievement, assuming that it comes to fruition with a final detailed agreement in June, will satisfy many concerns on both sides. It likely will result in improved relations and more respect for Iran. Importantly, it will also aid scientists and scientific research in Iran. Over a history of thousands of years, Persians have contributed fundamental scientific discoveries, including for example, by 10th century luminaries, the physicist Alhazen and astronomer Biruni. Now Persian scientists can engage in more international collaboration, and the new physics laboratory in Fordo will be an excellent start. (For more, see these articles in Science, Nature, and NY Review of Books.)

Finally, this has implications for the region. If relations between Iran and world powers improve, Iran could play a much more important role in Middle Eastern affairs. I think this is as it should be, but those who see these relations as a zero-sum game, including some in Saudi Arabia and Israel, oppose the deal for that reason. Leaders of another regional power, Turkey, have not opposed it, however. Furthermore, the success of diplomacy helps to continue nonproliferation efforts under the NPT around the world. We should also acknowledge though, as long as people view nuclear power as the primary alternative to fossil fuels, many countries will invest in it, and the risk of nuclear breakout and proliferation will remain, in spite of IAEA efforts and the NPT.

Challenges of the James Webb Space Telescope, NASA’s Successor to Hubble

Everyone grows up eventually. It’s hard to believe, but the Hubble Space Telescope (HST), which many astronomers and astronomy fans consider to be one of the most important telescopes of our generation, turns 25 this month. Hubble, built and funded by NASA and the European Space Agency, was launched on 24th April 1990, only a half year after the fall of the Berlin Wall. Its instruments produced numerous iconic images, including the spectacular ones below.

Everyone is celebrating this anniversary! Check out hubble25th.org for more images, news, and information. The 2010 documentary, “Saving Hubble,” is now viewable for free. Plus, in a public lecture on 1st April as part of National Academies’ Space Science Week, Jason Kalirai (Space Telescope Science Institute) highlighted Hubble’s many scientific contributions.

Crab Nebula (Credit: Hubble Space Telescope)

Crab Nebula (Credit: Hubble Space Telescope)

Galaxy M83 (HST)

Galaxy M83 (HST)

Ultra Deep Field (HST)

Ultra Deep Field (HST)

Now astronomers and the astronomy-loving public are anticipating and preparing for Hubble’s successor, the James Webb Space Telescope (JWST, named after a former NASA administrator). Over its ambitious 5 to 10-year mission (a Star Trek-style time-scale!), its powerful cameras and spectrometers will focus on near- to mid-infrared wavelengths and will examine planetary systems in our galaxy as well as distant galaxies forming in the early universe, only a few hundred million years after the Big Bang. As you can see, it’s built with a folding segmented mirror and a deployable sunshield. It’s not servicable like Hubble was, as JWST will orbit one million miles from Earth.

Artist's impression of NASA's James Webb Space Telescope.

Artist’s impression of NASA’s James Webb Space Telescope.

As I’ve written in previous posts, JWST’s gigantic budget has been contentious in the astronomical community. While astronomers believe that JWST will likely have a big scientific impact, especially on the fields of planetary physics and galaxy formation, others are unhappy that its cost inevitably results in smaller programs being cut. NASA officials prioritize the missions and programs the agency invests in, and it is simply not feasible to fund every exciting project astronomers propose. (JWST’s budget constituted nearly half of NASA’s astrophysics budget for FY 2015.) Based on my conversations with astronomers, the community remains divided about JWST, though many astronomers are excited about the telescope and note its importance for public outreach.

Credit: NASA Astrophysics Division Director Paul Hertz

Credit: NASA Astrophysics Division Director Paul Hertz

Large projects rarely stay on schedule and on budget in astrophysics, but JWST was perhaps an extreme case. A decade ago, JWST faced considerable criticism, such as in this Nature article by Lee Billings, because of its many delays and cost overruns. But after much pressure and threats from Congress to cancel the program, NASA officials rebaselined JWST’s budget and conducted a management overhaul in 2011. Since then, scientists have kept JWST within its new $8.8-billion budget and the telescope is on schedule for launch in 2018.

Last Tuesday, the House Science Committee held a hearing reviewing JWST’s progress, called “Searching for the Origins of the Universe: An Update on the Progress of the James Webb Space Telescope (JWST).” According to the American Institute of Physics, the committee’s Chair and Ranking Member, Rep. Steven Palazzo (R-MS) and Rep. Donna Edwards (D-MD), “expressed, as did other subcommittee members, great interest in and support for the telescope.” According to Cristina Chaplain of the Government Accountability Office, JWST has ten months of unused budget reserves, which will be more than enough as it moves into the integration and testing phase.

A few challenges remain. For example, technicians have had difficulty with a “cryocooler” component, which needs to operate at much colder temperatures than other such units in order to keep the Mid-Infrared Instrument sufficiently cool, but it is still scheduled to be delivered this summer. In any case, both John Grunsfeld, associate administrator of NASA’s Science Mission Directorate, and John Mather, JWST’s Senior Project Scientist, expressed confidence to the Committee that this observatory will launch in 2018. “Expect amazing discoveries,” Mather said.

For more coverage, take a look at these articles in Scientific American, Space News, and Space.com. [Full disclosure: I am a member of the American Institute of Physics, and former colleagues at the University of Arizona helped design JWST’s NIRCam instrument.]