Will Climate Change Embolden the Environmental Justice Movement?

[I’m cross-posting this, which was originally posted on the Union of Concerned Scientists blog. Thanks to Melissa Varga for editing assistance.]

We are at an historic anniversary: the Civil Rights Act was enacted fifty years ago on the 2nd of July, 1964. According to the legislation, all persons “shall be entitled to the full and equal enjoyment of…any place of public accommodation, as defined in this section, without discrimination” based on race, color, religion, or national origin. It ended unequal application of voter registration requirements and racial segregation in schools, at the workplace and by facilities that served the general public. (Another milestone, Brown v. Board of Education, occurred sixty years ago.) The Civil Rights Act was initially about the important symbolism of inclusion. But what does this have to do with climate change?


We still need to address what sociologists refer to as institutionalized inequality and injustice. Randall Kennedy in Harper’s magazine asks, why has the struggle against racism been more effective in public accommodations than in schooling, housing, employment, and the administration of criminal justice? “What is the value,” the civil rights activist Bayard Rustin once asked, “of winning access to public accommodations for those who lack money to use them?” To address structural injustices and inequities, more action is required.

“Environmental justice” is meant to address a critical area where such injustices remain. Attorney General Eric Holder said in a speech at the Environmental Protection Agency in 2011 that Dr. Martin Luther King Jr. “plant[ed] the seeds of the environmental justice movement” and that environmental justice is “a civil rights issue.” The EPA defines environmental justice (EJ) as the “fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.” EJ often refers to water and air pollution, soil contamination, toxic hazards, power plants, industrial facilities, and environmental degradation that preferentially affect residential areas and communities with people of a particular race, ethnicity, or economic status. It also refers to social movements that have, with some success, attempted to rectify this.

EJ is also particularly relevant to climate change. Issues of “equity, justice, and fairness” were referred to in the latest IPCC report, and as argued by Union of Concerned Scientists Senior Climate Economist Rachel Cleetus in an earlier post, EJ should be considered as a major factor in President Obama’s Climate Action Plan. We are already seeing extreme climate events, including heat waves, floods, wildfires, and droughts, and poor coastal communities are particularly vulnerable to storm surges, coastal flooding, and rising sea levels. Although dangerous weather events appear to occur randomly, some people are more vulnerable than others and some receive more effective aid during cleanup and recovery. (See the book “Race, Place, and Environmental Justice after Hurricane Katrina”, edited by Robert Bullard and Beverly Wright.) Sometimes environmental laws are insufficient and federal agencies don’t take sufficient steps to protect workers and residents, and certainly there is room for improvement.

A few weeks ago, I attended a meeting on Climate Change Resilience and Governance in Washington, DC, which was organized by the American Association for the Advancement of Science (AAAS). The speakers included Jalonne White-Newsome, a former UCS Kendall Science Fellow now a policy analyst for WE ACT for Environmental Justice. She talked about how currently EJ communities are not engaged in the process, and the failure to mobilize the majority of Americans who want action on climate change is partly due to the fact that not everyone is part of the conversation. Many black, Latino, and Native American communities, as well as working class white communities, live closer to various polluting industries, landfills, fracking infrastructure, etc. than others, but they don’t have enough information about what they can do about it, how they can communicate with the authorities, or how to receive the aid they need. (For more on this meeting, see my blog post on it).

Scientists, activists, and policy analysts are now thinking about and addressing the causes and effects of climate change. Although we want to substantially reduce carbon dioxide emissions and avoid the worst of global warming, climate change is already happening. Throughout different regions of the US, we can expect more frequent and extreme droughts, floods, and heatwaves in the future (see the overview of the National Climate Assessment.

This is where climate adaptation and resilience come in, and this is what people are actively working on these days. For example, people on the top floors of poorly cooled buildings in dense urban areas are among the most vulnerable to heat waves, and simple solutions like white-painted roofs (see below) can save many lives. Scientists and medical experts are also studying the cumulative impact to the health of vulnerable populations, for example following natural disasters (such as hurricanes or floods) that also damage the social and physical infrastructure necessary for resilience and emergency response. Afterward, federal agencies need to be ready to help local organizations and communities with reconstruction. To address future water shortages and drought impacts, Congress authorized the National Integrated Drought Information System in 2006, which identifies drought-sensitive regions and manages drought-related risks and which involves the coordination of federal, state, local, regional, and tribal partners.


There is certainly plenty more work to do on climate mitigation and adaptation, and environmental justice should be a key element of it. As we look back on all we’ve accomplished since the Civil Rights Act was passed fifty years ago, let’s keep working to eliminate injustice and inequality as we prepare for the great challenge of the 21st century—climate change.

Water Policy Issues, with a Focus on the US Southwest

Water policy issues are very important, but we haven’t discussed them much on this blog yet. Much of my information here comes from Ellen Hanak and other analysts of the Public Policy Institute of California (PPIC), analysts from the Union of Concerned Scientists (UCS), a recent article by Christopher Ketchum in Harper’s, a book by Robert Glennon (Unquenchable), and other sources. I’m not an expert on water policy, and any errors are my own. As usual, please let me know if you notice any errors, and I’m happy to hear any comments. I’ll focus on the southwestern US (mainly because I grew up in Colorado and now live in California), but many of these issues apply elsewhere as well. And while the Southwest is dealing with drought and water scarcity, other places, such as the UK and the Midwest US, are dealing with flooding.


According to the Worldwatch Institute, already some 1.2 billion people live in areas of physical water scarcity, while another 1.6 billion face “economic water shortage”. By 2025, almost half of the world will be living in conditions of water stress. Some analysts predict that water wars (see Vandana Shiva’s book) and conflicts will increase in the future. Considering that we need water to live, it’s not surprising that the United Nations General Assembly voted in a resolution declaring that access to clean water and sanitation is a fundamental human right.

At least conditions on Earth are not as bad as Mars, which has experienced 600 million years of drought and which probably hasn’t supported life, at least on its surface. But water scarcity is an extremely important problem that we’re probably not taking seriously enough; as Stephen Colbert put it, “if the human body is 60 percent water, why am I only two percent interested?”

The Southwest and California in particular are experiencing their worst recorded drought (for example, see the NASA satellite images below). In response, the California state legislature and Gov. Brown passed a drought relief package last month, while Sen. Feinstein and others are seeking to pass a bill in Congress to aid drought-stricken states.


Now here’s some historical and legal context. The Colorado River Compact of 1922 was negotiated by members of the upper-basin states (Colorado, New Mexico, Utah, Wyoming) and the lower-basin states (Arizona, California, Nevada), and it was an agreement for hydraulic management of the Southwest. According to the US system of water rights, however, the person who first made “beneficial use” of a stream or river had first right to it. Under this doctrine, the earliest users of the Colorado River (California) could legally establish a monopoly over regional water supply, even though most of that water came from another state (Colorado). A major problem was that because 1922 happened to occur during an unusually wet period, people assumed that the Colorado held more water than it really did: its annual water flow as estimated to be 17-18 million acre feet, though it was later more accurately estimated at 14 million acre-feet (17 billion cubic-meters) on average. It was therefore already overallocated from the start. The lower basin (including southern CA) is now overusing its share of the Colorado River, and it’s not a sustainable situation. A court case (Arizona v. California) that was decided by the Supreme Court in 1963 affirmed that Arizona was owed 2.8 million acre feet of water annually, but under the doctrine of prior appropriation, Arizona’s rights would remain secondary to California’s.

For water use, it’s useful to distinguish between water withdrawal (from surface or ground sources) and the consumption of water already withdrawn. Consequently, as argued by Ellen Hanak at a recent PPIC event in Sacramento, we need to consider not just water supplies but also water management and (in)efficient water consumption. Although one usually thinks of water for drinking, washing, cleaning, and other residential uses, much more water is used for irrigation (agriculture), industry, and power plants; according to the UCS, power plants account for 41% of freshwater withdrawals in the US. It’s also useful to distinguish between direct and indirect water use, and I’ll get into that more below.

Water shortages, already a critical issue in the Southwest, are likely to become far worse with climate change (although the extent to which it’s due to climate change is still debated). Rivers such as the Colorado, which is primarily supplied by snowmelt and is already overallocated, are particularly vulnerable. For the past fourteen years, the Colorado River has been at its lowest level since the ninth century. According to Tim Barnett from UC San Diego’s Scripps Institution of Oceanography (SIO), with climate change, currently scheduled water deliveries from the Colorado River are unlikely to be met by mid-century. Rising air temperatures due to global warming will result in reduced snowfall: by the end of this century, California’s ski season could disappear with a 80% loss of Sierra snowpack, and Washington and Oregon would experience reduced snowfall as well. In addition, although per capita water use has been gradually decreasing, population growth in the Southwest is likely to increase urban water demand in some regions. In a high carbon emissions scenario, annual losses to agriculture, forestry, and fisheries could reach $4.3B in California alone, and the prices of fresh fruit, vegetables, dairy, and fish, will rise. There will be more competition between human water use and water needed to support fish and other wildlife, and potential solutions will involve difficult trade-offs. (The following figure from the EPA summarizes climate impacts on the hydrologic cycle.)


In the studies mentioned above by SIO scientists, the Colorado River’s average annual flow could decline by as much as 30% by 2050. As a result, without massively reducing water usage, Lake Mead has a 50% chance of declining to “dead pool” by 2036. At that level, water deliveries to millions of people in California and Arizona and to millions of acres of farmland will cease, and hydroelectric production at the dam will already have stopped. It is incredible to consider that this could happen in our lifetime, as the Colorado is the same river that carved the Grand Canyon over tens of millions of years, and it is one of the rivers on which the Ancient Puebloan depended until around 1300, when drought, decreased rainfall, and a drop in water table levels appeared to drive the people away from their civilization. (See also this article in National Geographic about ancient “megadroughts” in human history.)

The largest fraction of water consumption is due to agriculture, power plants, and industry. Considering the fact that we indirectly need water because of our need for energy, this points to the issue of the “water-energy nexus.” The average U.S. family of four directly uses 400 gallons of freshwater per day, while indirectly using 600-1800 gallons through power plant water withdrawals. We need energy for water production and distribution (and the desalination plant being constructed near San Diego will require quite a bit), and we also need water for energy-related infrastructure. Coal and nuclear power plants use large amounts of freshwater to cool the plants: for example, a typical 600-MW coal-fired plant consumes more than 2 billion gallons of water per year from nearby lakes, rivers, aquifers, or oceans. In addition, as we discussed in my previous blog post, fracking techniques for extracting shale gas require millions of gallons of water to be injected into a well, and they can contaminate groundwater as well. Fortunately, wind turbines and solar photovoltaic modules require essentially no water at all, but other renewable energies, like hydroelectric, bioenergy, and geothermal, can be water intensive. As argued by Laura Wisland, since we expect climate change to increase the frequency and severity of droughts in California, it will be important to hedge our electricity supplies with predictable, renewable resources, especially wind and solar.

What can be done? As a “silver lining” of the current situation, the ongoing drought in the Southwest provides a window for reform, and here are a few ideas. We should shift toward less water-intensive sources of energy such as wind and solar. Water should cost more: we should modernize water measurement and pricing with better estimates of water use and prices that reflect water’s economic value. We could learn from cities in dry places elsewhere (such as Australia) about how to make urban areas more water efficient, and we could have tiered water rates with higher prices for greater use. In agriculture, crops that cannot be grown without subsidies should not be grown. We need improvements to local groundwater management. Since surveys show that most Californians believe that there are environmental inequities between more and less affluent communities in the state, it’s also important to consider environmental justice issues while developing new water policy programs (see this article, for example). We need to develop more reliable funding (through state bonds or local ratepayers), especially for environmental management, flood protection, and statewide data collection and analysis. Finally, as argued in this PPIC report, water management agencies at all levels should aim to develop more coordinated, integrated approaches to management and regulatory oversight, drawing on scientific and technical analysis to support sound and balanced decisions.

The Future of Fracking in California

I attended an interesting forum at UC San Diego on Thursday, and this post is based on that. It was titled, “The Future of Fracking in California: Energy, Environment and Economics,” and the speakers included: Taiga Takahashi, Associate in the San Diego office of Latham & Watkins; Mark Ellis, Chief of Corporate Strategy for San Diego-based Sempra Energy; and Andrew Rosenberg, Director of the Center for Science and Democracy at the Union of Concerned Scientists. I’ll just summarize some of the more important points people made (based on my incomplete notes), and you can decide what you think of them.


Taiga Takahashi described the legal situation in California vis-à-vis hydraulic fracturing (fracking). Governor Jerry Brown supports “science-based fracking” that is protective of the environment. Brown also touts the economic benefits, including the creation of 2.8 million jobs (though this figure was disputed). In contrast, the CA Democratic party supports a moratorium on fracking. The bill SB 4 on well stimulation was passed in September requires the state Department of Oil, Gas & Geothermal Resources (DOGGR) to adopt regulations regarding water well testing and other tests of air and water pollution. New regulations will be developed by January 2015 while an environmental impact study will be completed six months afterward (my emphasis). Fracking restrictions are mostly similar to those in Colorado and much better than those in Pennsylvania. Takahashi argued that a “consensus approach” on fracking regulation in CA could be reached, which would include nongovernmental organizations (NGOs), the state, and industry.

Mark Ellis is a representative of industry. Sempra Energy is a major natural gas utility that owns San Diego Gas & Electric and Southern California Gas. Ellis argued that the “shale revolution” (his term) has made gas cheap relative to oil and thereby reduced prices. Gas is used mostly for power, since many are making a switch from coal to gas, as well as in industry and residential areas. There are also opportunities for using gas in transportation, such as with compressed/liquefied natural gas (LNG). Sempra is expanding production and building pipelines from Texas and Arizona to Mexico. Ellis argued that the “shale revolution” is being or could be replicated in other places, such as the UK, Australia, Brazil, and Russia.

Andrew Rosenberg spoke about a couple recent Union of Concerned Scientists (UCS) reports: “The Curious Case of Fracking: Engaging to Empower Citizens with Information” and “Toward an Evidence-Based Fracking Debate,” written by Pallavi Phartiyal, him, and others. He brought up many issues, such as the use of pipeline infrastructure vs trains and the relation between fracking, chemical plants, and oil. Importantly, fracking is a many-step process (as you can see in the figure at the top of this post), which includes water acquisition, chemical transport and mixing, well drilling and injection, a wastewater pit, onsite fuel processing and pipelines, nearby community residences and residential water wells, and waste transport and wastewater injection. The most important point he made is that we as a society must decide when particular actions are worth the risks, and to what extent those risks can be mitigated with regulations. There should be as much transparency as possible and plenty of opportunities for public comment. It’s important to close loopholes in federal environmental legislation; disclose the chemical composition, volume, and concentration of fracking fluids and wastewater; we require baseline and monitoring requirements for air water, and soil quality; make data publicly accessible; and engage citizens and address their concerns. (My views were mostly in agreement with Rosenberg’s. Full disclosure: I am an active member of UCS.)

After the speakers, there were a few comments and questions. I was surprised that this was the only time during the forum that climate change issues were raised. The issue of water usage was discussed as well, because of our ongoing drought. (In related news, Gov. Brown and the state Legislature just passed a drought relief package.) It also was clear that Sempra and other companies wouldn’t voluntarily make changes unless industry-wide regulations were applied; Ellis argued that singling out particular companies is counter-productive. It’s possible that there will be new Environmental Protection Agency (EPA) regulations on water and air pollution in the future.

The fracking debates in California continue. For example, the Los Angeles City Council is taking steps toward a fracking ban, and a rally against fracking is being organized at the Capitol in Sacramento in two weeks.

Environmental Justice

I’m a little late, but in honor of Martin Luther King Day, I want to write a short post on “environmental justice”.  U.S. Attorney General Eric Holder said in a speech at the Environmental Protection Agency in 2011 that Dr. Martin Luther King Jr. “plant[ed] the seeds of the environmental justice movement” and that environmental justice is “a civil rights issue.”

If you haven’t heard of the term, the EPA defines environmental justice (EJ) as the “fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.” EJ often refers to the water and air pollution, landfills, toxic waste, power plants, industrial facilities, environmental degradation, etc. that preferentially affect people of a particular race or ethnicity. It also refers to social movements that have, with some success, attempted to rectify this.

Environmental justice (and injustice) is something that should be discussed and addressed more often in the media and in politics. If you’re interested, there are a few good books about EJ out there (such as Dumping in Dixie by Robert Bullard). EJ became an important issue during the heyday of the civil rights and environmental movements, and the most successful EJ lawsuits have been based on violations of civil rights laws.


EJ returned to the news in 2005 during Hurricane Katrina and its aftermath in the New Orleans region. (For example, see these articles/programs in the Huffington Post and Democracy Now.) Katrina disproportionately affected communities of color (as well as poor whites), and some people argue that the reconstruction efforts should have better reflected and involved the needs and concerns of these communities. Some have made similar claims in the aftermath of the BP oil spill in the Gulf of Mexico.

As we see new environmental problems and issues in the future, it’s very important for us to consider race and class when addressing them. Now we’re already seeing that climate change due to carbon emissions of people in wealthy nations appears to be preferentially affecting the poor and communities of color, especially those in coastal and island regions.