Book Review: Five Billion Years of Solitude

As long as humans have roamed the Earth, they have looked up to the skies, speculating and pondering about the celestial wonders populating the distant cosmos. From the early astronomers and natural philosophers until today’s (including me), people have observed and studied the billions of twinkling dots, all the while wondering whether there are other worlds out there and whether they might host lifeforms like us.

FiveBillionYearsofSolitude

In his first book, “Five Billion Years of Solitude: The Search for Life Among the Stars,” Lee Billings explores these and related questions. He chronicles the story of space exploration, planet-hunting and the growing field of astrobiology, while meeting fascinating characters and discussing their research, telescopes, discoveries and challenges. He offers clear and compelling explanations, such as of planetary physics and habitability, and he takes important asides into debates on space exploration budgets and the fate of our own planet, including the ongoing climate change crisis.

Billings is a talented science journalist. Like his work for Scientific American and other publications, the book is excellently written and researched. It won the 2014 American Institute of Physics science communication award in the book category, announced at the American Astronomical Society meeting in January.

Over the course of the book, Billings tracks down and speaks with important figures in planetary astronomy. He begins with Frank Drake, who along with nine other scientists in 1961 attempt to quantify the abundance of life-supporting planets in the galaxy in a calculation now known as the Drake Equation. He also meets with other astrophysicists, including University of California, Santa Cruz professor Greg Laughlin, Space Telescope Science Institute director Matt Mountain and MIT professor Sara Seager.

Since the time-scale or life-time of civilizations plays a role in the Drake Equation, his investigations lead to an examination of our own history and the longevity of humanity on Earth. Billings discusses the planet’s changing climate and other looming threats, for which our society appears unprepared. His reporting takes him to southern California too, where he quotes from my former colleague, UC San Diego physicist Tom Murphy, who considered the question of growing global energy consumption.

Other important questions come up as well. How far away are planets beyond our solar system and how long would it take to get there? What kind of atmospheric, geological and climatic conditions must a habitable planet have? How do astronomers detect planets, when they are so small, so faint and so close to their brightly glowing suns? What are our prospects for finding more Earth-like planets?

And what will happen to the Earth and humankind—if we’re still around—over the next few billion years, as our sun brightens, expands and transforms into a red giant star? As Billings starkly puts it in his interview for The Atlantic, “We may have—we may be—the only chance available for life on Earth to somehow escape a final, ultimate planetary and stellar death.”

Artist's conception of NASA's Kepler spacecraft. (Image credit: NASA/Ames/JPL-Caltech)

Artist’s conception of NASA’s Kepler spacecraft. (Image credit: NASA/Ames/JPL-Caltech)

With the Kepler telescope, we have the good fortune to be living at a time when actually Earth-like worlds, not just super-Earths and gas dwarfs, can be identified. Astronomers have already used the telescope to find a few potential Earth cousins, which have the right size and the right “Goldilocks” distance from their stars, and many many more candidates are on the horizon. Under certain conditions, follow-up observations can measure the planets’ atmospheres and climates to further assess their habitability.

It’s an exciting time! With even more advanced planet-finding telescopes coming up, such as the Hubble successors, the James Webb Space Telescope and High-Definition Space Telescope, we can look forward to more detailed images and observations of exoplanets in the near future. Maybe Earth has twins and maybe we are not alone.

I have a few criticisms of Five Billion Years, but they’re very minor ones. I liked the analysis of federal budget debates at multiple points in the book, but Billings could have written a little more about why as a society we should prioritize space exploration and astronomical research. If, say, a member of the House Science Committee (or more likely, their staffer) were to read this, it would be helpful to spell that out. Early in the book, he provides an engaging historical survey of astronomy, but he neglected Eastern contributions, such as from Persians, Arabs and Chinese. A few chapters meandered quite a bit too, but I enjoyed his writing style.

In any case, this is a beautifully written and thoroughly researched book, and I recommend it. Billings puts the search for extraterrestrial life in a broader context and pushes us to think about our place in the vast universe. The story continues.

[P.S. I’m extremely busy these days with the UC Santa Cruz science communication program and writing internships, so I may write posts here less often. But I will link to pieces I’ve written elsewhere, which have the benefit of rigorous editing, so if you like my blog, you’ll like them even more.]

My Surprising and Exciting Journey from Scientist to Science Writer

I’ve been drawn to science since I was a kid. I had many excellent and creative teachers along the way, including one who taught us students to be more observant and to think critically and another who smashed bowling balls into desks and who ran into a wall (while wearing pads and a helmet, of course) to demonstrate momentum conservation. I grew up in Colorado, and I enjoyed gaping at the Milky Way and the beautiful night sky while in the Rockies, even if I couldn’t name many constellations. Carl Sagan’s Cosmos program and the Star Trek TV shows also inspired me to explore astrophysics later in life.

Milky Way over Great Sand Dunes National Park, Colorado. (Photo by Carl Fredrickson)

Milky Way over Great Sand Dunes National Park, Colorado. (Photo by Carl Fredrickson)

But my head isn’t always in the stars. I have many other interests too, including sociology, political science and philosophy of science, and I’ve always enjoyed literature and poetry too. I’m not just interested in doing science and analyzing datasets and phenomena; that, by itself, is not enough. I also desire to use science and critical thinking to help people and connect with them. Since science plays such an important role in human society, I’d like to communicate scientists’ research and debates and the scientific process as well as I can. While the behavior of neutrinos, ice sheets and red pandas might sound interesting, for example, we always have to ask, why are they important? What do scientists claim to have learned about them and how did they learn it? What are the broader implications and context for the research?

Ever the lifetime student, a couple years ago I thought I might become an absent-minded, nerdy, activist professor, maybe widening my scope beyond astronomy and physics into interdisciplinary research and public outreach. But then I realized that I wanted to do more. I examined many interconnections between science and policy—often posting about them on this blog—and I investigated ways I could utilize and develop my science writing skills. I earned fellowship opportunities in both science writing and science policy, and I considered going on both directions. As the head of our astrophysics and space sciences department told me while I mulled over the options, “Those aren’t actually that different. They both involve communicating science to people who might not understand it well.”

In the end, after fifteen years working as a Ph.D. student, teaching and research assistant, postdoctoral researcher, research scientist and lecturer, I decided that I would make the shift and become a science writer! It’s a big step, and I felt a bit nervous about it. Now that I’ve made the decision, I am happy and excited to be trying something new, and I look forward to improving my skills and working on it full-time.

For those of you considering working in science writing or science policy, or for those of you just interested in learning more, I am happy to help. In any case, here are a few suggestions and pieces of advice, which will be particularly relevant for you if you’re coming from a science background as I did.

First, I recommend becoming involved in public outreach and education programs. You may even decide to organize your own events. Just connect to people in whatever ways work well for you, such as speaking in local school classrooms, making demonstrations for students at your university, mentoring prospective students, interacting with members of the public at museums and planetaria, talking to people at cafes and pubs (such as Two Scientists Walk into a Bar, Astronomy on Tap, and other programs), etc.

Second, become more involved in and volunteer for the relevant professional scientific societies, such as the American Astronomical Society, American Physical Society, American Geophysical Union, etc. Be more than just a card-carrying member. All of these societies, and especially the American Association for the Advancement of Science (AAAS), have many useful resources, scholarships and internships at your disposal.

Third, it is crucially important to talk to a variety of people who work in science writing or science policy (or whatever you might be interested in), get involved and try it yourself. Make sure that you don’t merely like the concept of it but that you actually enjoy and excel at doing it. You will need to make the time to do this. You may find new people in your own college, university or community working in these professions who have much to teach you. Try a variety of media and styles too, possibly including social media, blogs, podcasts, news articles, feature stories, videos, etc. If you’re curious about what I’ve done over the past year or so, look here.

Fourth, check out professional science writing organizations. In particular, I recommend looking up the National Association of Science Writers, the Society of Environmental Journalists and the Association of Healthcare Journalists. Furthermore, you might find useful local organizations too. (We have the San Diego Press Club here, for example). Science writing workshops, such as those in Santa Fe, New Mexico and in Banff, Alberta, could be beneficial for you and could introduce you to others like yourself who are also just starting to venture into the profession. Finally, if you are interested, the AAAS has mass media and science policy fellowships, and the University of California, Santa Cruz, MIT, NYU, and other universities have graduate programs you may consider, though these involve an investment of time and money.

Before diving in, consider the job prospects. Although we have our ideals, we also want to work for a livable salary with sufficient job security. Staff writers, editors, freelancers and public information officers (PIOs) all have pros and cons to their jobs, and it’s important to understand them well.

I’ll make it official: I decided to head to the UC Santa Cruz science communication program, and I’m looking forward to it! In a few days I will be on my way north to Santa Cruz. I plan to try my hand working with a local newspaper, magazine, and an online news outlet, and this fall I will be working with PIOs at Stanford Engineering. Stay tuned for my new articles!

Coming from a science background, I have many challenging things to learn, but I think I’m up to it. I’m trying to learn to write more creatively and evocatively, while identifying compelling characters. I’m learning to assess which scientific discoveries and developments make for the most intriguing stories. Moreover, scientists and science writers have different ways of thinking, and bridging the gap between them involves more steps than you might think it does. Perhaps most importantly, after thinking of myself as a scientist for so many years, it’s hard to craft a new identity. It turns out that while I am an astronomer and a physicist, I am many other things too. I’m continuing to explore the universe, just in a myriad different ways than before. I’m boldly going where I haven’t gone before, and the sky’s the limit!

Reporting from the National Science Writers Meeting in Columbus, Ohio

As someone who’s still learning the ropes, I was excited to attend my first science writers meeting in Columbus this weekend. The National Association of Science Writers (NASW) and Council for the Advancement of Science Writing (CASW) organized the meeting, which included a nice variety of professional development workshops, briefings on the latest scientific research, and some field trips. It included a couple parties at a nearby brewery too, so I knew I was in good company, and I was happy to make some new friends and contacts. Here’s my name tag, which was a convenient little book of the program (and you can guess who I wrote down as my science hero):

photo 1

I’ll give you some highlights of a couple sessions that interested me. People “live-tweeted” most of the sessions too at #sciwri14.

NASW Meeting

One of the most useful sessions for me was the “pitch slam,” where writers had a single minute to pitch a story idea to editors, who gave feedback in real time. (The editors came from Slate, NPR, Popular Science, Discover, NOVA, Scientific American, and New York Times.) Speaking in front of the microphone understandably made people nervous, but I think I heard some pretty good pitches. Since I’m trained as a scientist, my approach to a science story or issue is to keep asking questions, but it sounds like editors want answers too! It’s important to be concise and clearly state at the beginning what the narrative thrust is and why the story is interesting. One should also describe the implications of the scientific result are why they’re surprising or new. Science stories need characters too, but that can come afterward. And one should keep in mind the audience of readers who would most likely read it, since some stories are more appropriate in particular news outlets rather than others. For example, Popular Science usually publishes “forward-looking” stories, so they’d be less interested in pieces focused on historical scientific advances.

The session on “diving into controversy and politics” was popular too, and it included Coral Davenport (New York Times), David Malakoff (Science Insider), and Nancy Shute (NPR). They spoke about hot-button topics in the news today—mainly climate change and Ebola. Davenport argued that climate change (along with energy and environment policy) is now a top-tier election issue and that this is mainly due to President Obama’s Environmental Protection Agency (EPA) regulations for coal-fired power plants, Tom Steyer’s money, and current weather events. She made a fairly convincing argument, but I think she overstated how new this development is, as fracking and the Keystone XL pipeline have been polarizing issues well before this midterm election campaign. Malakoff spoke about related topics and suggested that one should never pitch a “science policy” story (that is, one should frame the story differently). He pointed out that some stories are about a disagreement while others are about setting priorities. It’s important to state as clearly as possible who believes what and what their agenda is. We should ask whether the data and scientific results lead us to a particular policy prescription, and we should distinguish between scientists’ research and their opinions about which policy to advocate. We should write about the effects and impacts of particular policies, and then the reader can make his/her own decision.

The awards night took place on Saturday, and I was inspired to see so many excellent award-winning science writers. The winners included Azeen Ghorayshi for the Clark/Payne Award, Elisabeth Rosenthal for the Cohn Prize in medical science reporting, and the following Science in Society Journalism Award winners: Sheri Fink, Amy Harmon, Phil McKenna, Cally Carswell, and Charles Seife.

CASW Meeting

Getting back to climate change, on Sunday we toured the impressive Byrd Polar Research Center of Ohio State University. Lonnie Thompson and Ellen Mosley-Thompson, who have published numerous influential papers in Science and Nature, showed us the center and explained their research to us, which involves many fields but especially ice core climatology. Since the 1970s, they have conducted research at the poles as well as on mountains near the equator (in Peru and Tibet), where they drill down and pull up the ice cores, then bring them down the mountain on yaks and trucks and eventually store them in a huge freezer, which you can see below. (Our brief tour of the freezer was the only time I wore my hat on this trip.) Drs. Thompson and Mosley-Thompson use the ice cores to infer details about the climate and history of a particular regionTEXTsort of like using tree rings. For example, from ice cores taken from Kilimanjaro, they found evidence of a 300-year drought 4000 years ago (evidenced by less snow and ice accumulation), which would have had a dramatic effect on societies at the time. With rapid climate change, unfortunately the glaciers are rapidly retreating, but a silver lining is that they’ve uncovered 5000 to 6000-year-old plants!

photo 7

Finally, I had looked forward to the discussions of the ongoing BICEP2 controversy, and I was not disappointed. Marc Kamionkowski (Johns Hopkins University) gave an excellent overview of the basics of cosmology, the expanding universe, cosmic microwave background radiation (CMB), which is sort of an “afterglow of the Big Bang.” Many collaborations using different telescopes (including researchers at UC San Diego) seek to detect CMB “B-mode” polarization of the CMB due to primordial gravitational waves, which would constitute evidence supporting the rapid “inflation” of the early universe and would be a momentous discovery! At the BICEP2’s press conference in March at Harvard and in the preprint, the scientists did say “if confirmed…”, but of course everyone was excited about the implications of the result. However, new measurements from the Planck collaboration (see below) suggest that the polarization might not be due to the CMB’s gravitational waves but to foreground emission from dust grains in our own galaxy, though their calculation of the dust contribution is highly uncertain.

Map

A short discussion with Matthew Francis (freelance) and Betsy Mason (Wired) followed Kamionkowski’s talk, where they tackled questions that scientists and science communicators frequently face. Scientists want press attention and news outlets want headlines, so how should one describe and report caveats and uncertainties, especially when the implications (if confirmed) are so exciting? What is the best way to express skepticism of a particular aspect of a scientific result? And a question that I often ask: how can we communicate the messiness or “self-correcting” nature of science? In any case, we’ll all continue to follow the ongoing CMB debate in the scientific community and the media.

Now I’m looking forward to doing much more writing (and reading) and to participating in next year’s meeting!

A few thoughts on the peer-review process

How does the peer-review process work? How do scientists critically review each others’ work to ensure that the most robust results and thorough analyses are published and that only the best research proposals are awarded grants? How do scientists’ papers and articles change between submission and publication? It’s a process that has advantages and shortcomings, and maybe it’s time for us as a community to try to improve it. (I’m not the only person who’s written about this stuff, and you may be interested in other scientists’ perspectives, such as Sarah Kendrew, Andrew Pontzen, and Kelle Cruz. This blog on Guardian has interesting relating posts too.)

For us scientists, writing about our scientific research and writing proposals for planned research is a critically important aspect of the job. The ubiquity of the “publish or perish” maxim highlights its significance for advancing one’s career. Publishing research and evaluating and responding to others’ publications are crucial for scientists to try to debate and eventually reach a consensus on particular issues. We want to make sure that we are learning something new and converging on important ideas and questions rather than being led astray by poorly vetted results. Therefore, we want to make the peer-review process as effective and efficient as possible.

Female researcher taking notes

For readers unfamiliar with the process, it basically goes like this: scientist Dr. A and her colleagues are working on a research project. They obtain a preliminary result—which may be a detection of something, the development of a new model, the refutation of a previously held assumption, etc.—which they test and hone until they have something they deem publishable. Then Dr. A’s group write a paper explaining the research they conducted (so that it potentially could be repeated by an independent group) and lay out their arguments and conclusions while putting them in the context of other scientists’ work. If they can put together a sufficiently high-quality paper, they then submit it to a journal. An independent “referee” then reviews the work and writes a report. (Science is an international enterprise, so like the World Cup, referees can come from around the world.) The paper goes through a few or many iterations between the authors and referee(s) until it is either rejected or accepted for publication, and these interactions may be facilitated by an editor. At that point, the paper is typeset and the authors and copy editors check that the proof is accurate, and then a couple months later the paper is published online and in print.

(In my fields, people commonly publish their work in the Astrophysical Journal, Monthly Notices of the Royal Astronomical Society, Astronomy & Astrophysics, Physical Review D, and many others, including Nature, where they publish the most controversial and provocative results, which sometimes turn out later to be wrong.)

In general, this system works rather well, but there are inherent problems to it. For example, authors are dependent on the whim of a single referee, and some referees do not spend enough time and effort when reviewing papers and writing reports for authors. On the other hand, sometimes authors do not write sufficiently clearly or do not sufficiently double-check all of their work before submitting a paper. Also, sometimes great papers can be delayed for long periods because of nitpicking or unpunctual referees, while other papers may appear about they were not subjected to much critical scrutiny, though these things are often subjective and depend on one’s perspective.

There are other questions that are worthwhile discussing and considering. For example, how should a scientific editor select an appropriate referee to review a particular paper? When should a referee choose to remain anonymous or not? How should authors, referees, and editors deal with language barriers? What criteria should we use for accepting or rejecting a paper, and in a dispute, when and in what way should an editor intervene?

Some authors post their papers online for the community on arXiv.org (the astronomy page is here) before publication while others wait until a paper is in press. It’s important to get results out to the community, especially for junior scientists early in their careers. The early online posting of papers can yield interesting discussions and helpful feedback which can improve the quality of a paper before it is published. On the other hand, some of these discussions can be premature; some papers evolve significantly and quantitative and qualitative conclusions can change while a paper is being revised in the referee process. It is easy to jump to conclusions or to waste time with a paper that still needs further revision and analysis or maybe even is fundamentally flawed. Of course, this can also be said about some published papers as well.

implications for science journalists

These issues are also important to consider when scientists and journalists communicate and when journalists write or present scientific achievements or discoveries. Everyone is pressed for time, and journalists are under pressure to write copy within strict deadlines, but it’s very important to critically review the relevant science whenever possible. Also, in my opinion, it’s a good idea for journalists to talk to a scientists colleagues and competitors to try to learn about multiple perspectives and to determine which issues might be contentious. We should also keep in mind that achievements and discoveries are rarely accomplished by a single person but by a collaboration and were made possible by the work of other scientists upon which they’ve built. (Isaac Newton once said, “If I have seen further it is by standing on the shoulders of giants.”)

Furthermore, while one might tweet about a new unpublished scientific result, for more investigative journalism, it’s better of course to avoid rushing the analysis. We all like to learn about and comment on that new scientific study that everyone’s talking about, but unfortunately people will generally pay most attention to what they hear first rather than retractions or corrections that might be issued later on. We’re living in a fast-paced society and there is often demand for a quick turnaround for “content”, but the scientific enterprise goes on for generations—a much longer time-scale than the meme of the week.

improving the peer-review process

And how can this peer-review system be improved? I’ve heard a variety of suggestions, some of which are probably worthwhile to experiment with. We could consider having more than one person review papers, with the extra referees providing an advisory role. We could consider paying scientists for fulfilling their refereeing duties. We could make it possible for the scientific to comment on papers on the arXiv (or VoxCharta or elsewhere), thus making these archives of papers and proceedings more like social media (or rather like a “social medium”, but I never hear anyone say that).

Another related issue is that of “open-access journals” as opposed to journals that have paywalls making papers inaccessible to people. Public access to scientific research is very important, and there are many advantages of promoting open journals and of scientists using them more often. Scientists (including me) should think more seriously about how we can move in that direction.

Paradigm Shifts?

In addition to physics and astronomy, I used to study philosophy of science and sociology. In my opinion, many scientists could learn a few things from sociologists and philosophers of science, to help them to better understand and consider how scientific processes work, what influences them and potentially biases scientific results, and how science advances through their and others’ work. In addition, I think that people who aren’t professional scientists (who we often simply call “the public”) could better understand what we are learning and gaining from science and how scientific results are obtained. I’ll just write a few ideas here and we can discuss these issues further later, but my main point is this: science is an excellent tool that sometimes produces important results and helps us learn about the universe, our planet, and ourselves, but it can be a messy and nonlinear process, and scientists are human–they sometimes make mistakes and may be stubborn about abandoning a falsified theory or interpretation. The cleanly and clearly described scientific results in textbooks and newspaper articles are misleading in a way, as they sometimes make us forget the long, arduous, and contentious process through which those results were achieved. To quote from Carl Sagan (in Cosmos), who inspired the subtitle of this blog (the “pale blue dot” reference),

[Science] is not perfect. It can be misused. It is only a tool. But it is by far the best tool we have, self-correcting, ongoing, applicable to everything. It has two rules. First: there are no sacred truths; all assumptions must be critically examined; arguments from authority are worthless. Second: whatever is inconsistent with the facts must be discarded or revised.

As you may know, the title of this post refers to Thomas Kuhn (in his book, The Structure of Scientific Revolutions). “Normal science” (the way science is usually done) proceeds gradually and is based on paradigms, which are collections of diverse elements that tell scientists what experiments to perform, which observations to make, how to modify their theories, how to make choices between competing theories and hypotheses, etc. We need a paradigm to demarcate what is science and to distinguish it from pseudo-science. Scientific revolutions are paradigm shifts, which are relatively sudden and unstructured events, and which often occur because of a crisis brought about by the accumulation of anomalies under the prevailing paradigm. Moreover, they usually cannot be decided by rational debate; paradigm acceptance via revolution is essentially a sociological phenomenon and is a matter of persuasion and conversion (according to Kuhn). In any case, it’s true that some scientific debates, especially involving rival paradigms, are less than civil and rational and can look something like this:
calvin_arguing

I’d like to make the point that, at conferences and in grant proposals, scientists (including me) pretend that we are developing research that is not only cutting edge but is also groundbreaking and Earth-shattering; some go so far as to claim that they are producing revolutionary (or paradigm-shifting) research. Nonetheless, scientific revolutions are actually extremely rare. Science usually advances at a very gradual pace and with many ups and downs. (There are other reasons to act like our science is revolutionary, however, since this helps to gain media attention and perform outreach in the public, and it helps policy-makers to justify investments in basic research in science.) When a scientist or group of scientists does obtain a critically important result, it is usually the case that others have already produced similar results, though perhaps with less precision. Credit often goes to a single person who packaged and advertised their results well. For example, many scientists are behind the “Higgs boson” discovery, and though American scientists received the Nobel Prize for detecting anisotropies in the cosmic microwave background with the COBE satellite, Soviets actually made an earlier detection with the RELIKT-1 experiment.

einstein-bohr

Let’s briefly focus on the example of quantum mechanics, in which there were intense debates intense debates in the 1920s about (what appeared to be) “observationally equivalent” interpretations, which in a nutshell were either probabilistic or deterministic and realist ones. My favorite professor at Notre Dame, James T. Cushing, wrote a provocative book on the subject with the subtitle, “Historical Contingency and the Copenhagen Hegemony“. The debates occurred between Neils Bohr’s camp (with Heisenberg, Pauli, and others, who were primarily based in Copenhagen and Göttingen) and Albert Einstein’s camp (with Schrödinger and de Broglie). Bohr’s younger followers were trying to make bold claims about QM and to make names for themselves, and one could argue that they misconstrued Einstein’s views. Einstein had essentially lost by the 1930s, in which the nail in the coffin was von Neumann’s so-called impossibility proof of “hidden variables” theories–a proof that was shown to be false thirty years later. In any case, Cushing argues that in decisions about accepting or dismissing scientific theories, sometimes social conditions or historical coincidences can play a role. Mara Beller also wrote an interesting book about this (Quantum Dialogue: The Making of a Revolution), and she finds that in order to understand the consolidation of the Copenhagen interpretation, we need to account for the dynamics of the Bohr et al. vs. Einstein et al. struggle. (In addition to Cushing and Beller, another book by Arthur Fine, called The Shaky Game, is also a useful reference.) I should also point out that Bohr used the rhetoric of “inevitability” which implied that there was no plausible alternative to the Copenhagen paradigm. If you can convince people that your view is already being adopted by the establishment, then the battle has already been won.

More recently, we have had other scientific debates about rival paradigms, such as in astrophysics, the existence of dark matter (DM) versus modified Newtonian dynamics (MOND); DM is more widely accepted, though its nature–whether it is “cold” or “warm” and to what extent it is self-interacting–is still up for debate. Debates in biology, medicine, and economics, are often even more contentious, partly because they have policy implications and can conflict with religious views.

Other relevant issues include the “theory-ladenness of observation”, the argument that everything one observes is interpreted through a prior understanding (and assumption) of other theories and concepts, and the “underdetermination of theory by data.” The concept of underdetermination dates back to Pierre Duhem and W. V. Quine, and it refers to the argument that given a body of evidence, more than one theory may be consistent with it. A corollary is that when a theory is confronted with recalcitrant evidence, the theory is not falsified, but instead, it can be reconciled with the evidance by making suitable adjustments to its hypotheses and assumptions. It is nonetheless the case that some theories are clearly better than others. According to Larry Laudan, we should not overemphasize the role of sociological factors over logic and the scientific method.

In any case, all of this has practical implications for scientists as well as for science journalists and for people who popularize science. We should be careful to be aware of, examine, and test our implicit assumptions; we should examine and quantify all of our systematic uncertainties; and we should allow for plenty of investigation of alternative explanations and theories. In observations, we also should be careful about selection effects, incompleteness, and biases. Finally, we should remember that scientists are human and sometimes make mistakes. Scientists are trying to explore and gain knowledge about what’s really happening in the universe, but sometimes other interests (funding, employment, reputation, personalities, conflicts of interest, etc.) play important roles. We must watch out for herding effects and confirmation bias, where we converge and end up agreeing on the incorrect answer. (Historical examples include the optical or electromagnetic ether; the crystalline spheres of medieval astronomy; the humoral theory of medicine; ‘catastrophist’ geology; etc.) Paradigm shifts are rare, but when we do make such a shift, let’s be sure that what we’re transitioning to is actually our currently best paradigm.

[For more on philosophy of science, this anthology is a useful reference, and in particular, I recommend reading work by Imre Lakatos, Paul Feyerabend, Helen Longino, Nancy Cartwright, Bas van Fraassen, Mary Hesse, and David Bloor, who I didn’t have the space to write about here. In addition, others (Ian Hacking, Allan Franklin, Andrew Pickering, Peter Galison) have written about these issues in scientific observations and experimentation. For more on the sociology of science, this webpage seems to contain useful references.]

Publish or Perish?

I’d like to add a short post about writing and publishing papers. The phrase “publish or perish” is commonly heard because there is some truth to it. According to Wikipedia, the phrase dates back to the 1930s and 1940s.

There are some advantages to having pressure to publish. By encouraging scientists to write and publish their research, they and their work become more widely known, including among their peers. As scientists, we enjoy and are excited about working on research and publishing the interesting and new results, and putting the papers out helps to advance the field.

When considering scientists for academic posts (or for research grants), it can be a difficult and time-consuming process. That’s unavoidable, especially when numerous people will apply for small numbers of jobs and grants. One clearly quantifiable metric by which academics are judged is the number of papers they’ve published (and another is the size of grants they draw in). As pointed out by this recent New Yorker blog, both the amount and style of writing are related to the constant pressure to publish and the tough academic job market. In addition, the job market now appears two-tiered, with part-time and adjunct faculty working long hours for lower pay (see these NY Times and Salon articles). I plan to talk about this issue further in another post.

There are some major disadvantages to the publish-or-perish culture. One problem is that it doesn’t leave time for long-term or risky research on controversial topics. It also doesn’t allow for exploring new ideas, issues, or collaborations that might not pan out and result in something publishable. Nonetheless, these things are good for scientists and they are good for science, and when they are successful, there are huge rewards or discoveries. For example, Peter Higgs, the Nobel prize-winning physicist who was one of the discoverers of the Higgs boson, says that no university would employ him in today’s academic system because he would not be considered “productive” enough. The publish-or-perish culture is not just dominant in the physical sciences, but also in the social sciences, humanities, and law.

A related issue is that of “luxury” journals like Nature, Science, and Cell. According to the Guardian, Randy Schekman, the Nobel prize-winning biologist is now no longer publishing in these journals because they distort the scientific process. He writes: “A paper can become highly cited because it is good science – or because it is eye-catching, provocative, or wrong.” These journals have become brand names, and they prioritize publishing provocative results–perhaps before they’ve been sufficiently tested and vetted by editors, peer reviewers, or the authors themselves. The result is that the journals have a reputation for publishing results that are often wrong. Scientists know this, yet publishing in these journals still carries prestige.

In addition to publishing papers and books, scientists work on other important things that should be valued too. Key among them is teaching, of course, as well as participating in outreach programs, mentoring students, communicating with journalists and policy-makers, and other academic service to the community. These activities are not as easily quantifiable as scientists’ publications, but we should make the effort to recognize this work.

Reporting from the American Association for the Advancement of Science (AAAS) meeting

I’d like to tell you about the AAAS meeting I’m attending. (Look here for the program.) It’s in Chicago, which is definitely much colder than southern California! I know it might sounds strange, but it’s nice to experience a real winter again.

There were some astrophysics sessions (such as on galaxy evolution in the early universe and dark matter particles) but that wasn’t my focus here. I took some brief notes, and this is based on them…

There were a few sessions about science communication, outreach, and media. These are very important things: for example, according to Rabiah Mayas, the best indicator of whether people participate in science or become scientists as adults is the extent to which they engaged in science-related activities outside of school as kids. One person discussed the importance of fact-checking for producing high-quality and robust science writing, but it takes time; one should note that peer-review in scientific research is supposed to perform a similar purpose, though it can be time-consuming as well. In any case, many people agreed that scientists and journalists need to interact better and more frequently. (As a side note, I heard two high-profile science journalists mispronounce “arXiv”, which is pronounced exactly like “archive”.) In addition, it’s worth noting that smaller regional newspapers often don’t have dedicated science desks, though this could provide opportunities for young writers to contribute. There was also an excellent talk by Danielle Lee about “Raising STEM Awareness Among Under-Served and Under-Represented Audiences,” who talked about ways to take advantage of social media.

There were interesting presentations about scientists’ role in policy-making, but I’ll get back to that later. Someone made an important point that scientists should be extremely clear about when they are just trying to provide information versus when they are presenting (or advocating) policy options. I should be clearer about that myself.

I also saw interesting talks by people about public opinion surveys in the U.S. and internationally of knowledge and opinions of science and technology. According to these polls, although some Americans are worried about global warming/climate change, people are more worried about toxic waste, water and air pollution. According to Lydia Saad (of Gallup), 58% of Americans worry a “great deal” or “fair amount” about global warming, 57% think human activities are the main cause, 56% think it’s possible to take action to slow its effects, while only 34% think it will affect them or their way of life. In addition, she and Cary Funk (of Pew) found huge partisan gaps between self-identified Democrats, Independents, and Republicans. As one person pointed out, climate change is not just a science issue but has become a political one. Americans in polls had pretty high opinions of scientists, engineers, and medical doctors, but people had the best views of those in the military. There is a wide range of knowledge of science, especially when it comes to issues such as evolution. (Note that fewer Republicans believe in evolution by natural processes, due to a drop in those who are not evangelicals, who already had a low fraction.) Also note that the numbers depend on how poll questions are asked: for example, ~40% agree to, “The universe began with a huge explosion”, and when you add “according to astronomers”, then the proportion jumps up to 60%. (If you’re curious, this image basically describes astronomers’ current view of the Big Bang.)

bigbang

There was an interesting session dedicated to climate change science, which included scientists that contributed to the IPCC’s recent 5th Assessment Report (which we talked about in an earlier blog). Note the language they’re required to use to quantify their un/certainty: “virtually certain” means 99% certain, and then there’s “very likely” (90%), “likely” (67%), and “more likely than not” (>50%). Michael Wehner discussed applications of “extreme value statistics” (which are sometimes used analyze extremely luminous galaxies or large structures in astronomy: see this and this) on extreme temperatures. Extremely cold days will be less cold, while extremely hot days will be more common and hotter. For particular extreme weather events, one can’t say whether they’re due to climate change, but one can ask “How has the risk of this event changed because of climate change?” or “How did climate change affect the magnitude of this event?” It seems very likely that the there will be heavier heavy rainy days, longer dry seasons, and more consecutive dry days between precipitation events. There will be more droughts in the west (west of the Rockies) and southeast, and more floods in the midwest and northeast.

The plenary speaker today was Steven Chu, former Secretary of Energy until last year, who gave an excellent talk. He compared convincing people about climate change to earlier campaigns to convince people about the dangers of tobacco use and its connection to lung cancer; both issues have had industry-promoted disinformation as well. On rising temperatures with climate change, he channeled Yogi Berra when he said, “If we don’t change direction, we’ll end up where we’re heading.” He talked a little about the role of natural gas (see also these NYT and Science blogs), and he discussed carbon capture, utilization, and sequestration (CCUS). Finally, he talked about how one might determine an appropriate price of carbon. He advocated a revenue-neutral tax, starting at $10/ton and over ~12 years raising it to $50/ton, and then giving the money raised from this directly back to the public. He also talked about wind turbines, which are now more reliable, efficient, and bigger, and he predicted a 20-30% decline in price in the next 10-15 years. The cost of solar photovoltaic (PV) modules is also dropping, but installation costs and licensing fees (“soft costs”) should be reduced. I definitely had the impression that, now that Chu is no longer Energy Secretary, he could be more frank than before about his views on contentious issues.