Implications of the Midterm Election for Science

Just to be clear, I should distinguish between my statements as a scientist and my views on “science policy” and politics. This post is more about the latter, and I’m interested to hear your thoughts and views about these issues too.

The US midterm elections never receive as much media attention and as high turnouts as presidential ones. For family reasons or work reasons (because Election Day is not a holiday in the US) or because of disillusionment or apathy or other reasons, typically more than 60% of eligible voters do not vote during midterm elections.

The midterms on Tuesday (November 4th) are nonetheless important. In particular, science-related issues—especially climate change and Ebola—are playing significant roles in political campaigns and referenda on ballots around the country. In addition, the next (114th) Congress will shape federal budgets for basic and applied research in science, STEM (science, technology, engineering, and math) education, and public outreach, as well as setting budget priorities that could remain in place for years to come.

The Budget Situation

Developing and implementing federal budgets take considerable time and effort. The President and Office of Management and Budget first propose a budget for the next fiscal year (FY), then Congressional appropriations committees negotiate to develop their own budget bills, and then the final bill is executed by the federal agencies. Annual budgets for agencies such as the National Science Foundation (NSF), National Aeronautics and Space Agency (NASA), National Institutes of Health (NIH), and Environmental Protection Agency (EPA) can fluctuate throughout the budget-making process. For example, the House gave the NSF a 2.1% higher budget than the Senate Appropriations Committee, while both chambers rejected the President’s proposal to cut the Stratospheric Observatory for Infrared Astronomy (SOFIA) through NASA. The House and Senate appropriators also have different funding levels for the National Oceanic and Atmospheric Administration (NOAA), which include possible cuts to climate research. Note that federal science budgets also include the social and political sciences, which are funded through the NSF. It took forty years since the establishment of the NSF to include them under its aegis, and this is still contentious; an attempt in the House Science Committee to reduce their funding levels with an amendment earlier this year failed to pass.

Budget negotiations for FY 2015 were not completed when the House and Senate could not come to an agreement on the appropriations bills this summer. With the election approaching, Congress passed a three-month stopgap measure starting in September known as a continuing resolution (CR) to avert another government shutdown. The shutdown in 2013 had a disruptive impact on scientific researchers, students, and agency employees. For example, 99% of NSF’s workforce was furloughed, NASA sent 98% of its employees home without pay or access to their work, and NIH put 73% of its employees on enforced leave and suspended new clinical trials. Fortunately, this experience was not repeated.

Nevertheless, FY 2015 has just begun, and the CR means that the budgets continue on autopilot until December, and scientists hope that by then the new Congress will successfully finalize a budget bill for the rest of the fiscal year. Until a budget is passed, agencies continue to fund their programs at FY 2014 levels, which has the result that “sequestration” spending reductions from the Budget Control Act of 2011 will remain in place. If Congress does not make an agreement to reduce or remove these budget constraints, discretionary spending will return to sequester levels in FY 2016 and will remain there for the rest of the decade, meaning continued challenges for investment in science and technology. Considering that mandatory spending, which includes Social Security and Medicare, will continue to grow relative to the discretionary budget (see this CBO report), future budget negotiations will become even more difficult to resolve.

Education

STEM education and public outreach will be affected by the post-election Congress’s priorities as well. A couple months ago, Sen. J. Rockefeller (D-WV), introduced the America COMPETES Reauthorization Act. According to the Association of American Universities, the bill calls for “robust but sustainable funding increases for the [NSF] and National Institute for Standards and Technology” (NIST), and it supports each agency’s effort to improve education of future STEM professionals. However, support for the bill has not been sufficiently bipartisan to reauthorize it yet. Depending on the post-election environment, the Higher Education Act (HEA) reauthorization, introduced by Sen. T. Harkin (IA) might be more likely to pass. The HEA governs federal student aid, and considering that at least 70% of US university graduates are burdened with debt, this is clearly important. The bill would provide some relief for students by increasing state contributions to public universities and thereby reducing tuition fees, supporting community colleges, and expanding programs that allow high school students to earn college credits.

Election Campaigns and Ballot Measures

In addition to these science research and education issues, science policy is also relevant in many midterm election campaigns and ballot measures. Climate change, energy policies, and the environment are the most prominent science policy issues and are playing a big role in campaign ads. With increased flooding in the eastern US and the ongoing drought and wildfire conditions in the southwest—motivating a $7.5 billion water bond in California (see this PPIC post for info)—global warming concerns many voters. However, a partisan divide persists, depending how poll questions are framed. Hydraulic fracturing (fracking) and the Keystone XL remain controversial as well, and anti-fracking measures were nearly included on Colorado and Michigan’s ballots. In addition, in another science policy issue, voters in Colorado and Oregon will decide on the labeling of foods containing genetically modified crops (GMOs).

Moreover, climate change is a major campaign issue in the race between Rep. Scott Peters (CA-52), and Carl DeMaio in San Diego County. This tossup race has gained national attention, and though both candidates acknowledge the science behind climate change, DeMaio has stated that more research is needed. (Both candidates recently visited us at UC San Diego.) Importantly, Peters serves on the House Science Committee, and committee members Alan Grayson (FL-9) and Ami Bera (CA-7) are in close races as well. The post-election House Science Committee could change shape. Climate change also plays a role in the election between Sen. Mark Udall (CO) and Rep. Cory Gardner and in the one between Gov. Rick Scott (FL) and Charlie Crist.

In any case, science policy issues are clearly important in this election, which will have important implications for investment in science research and education.

[Note that part of this post was adapted from an op-ed that I submitted last month to the Journal of Science Policy & Governance.]

Reporting from the National Science Writers Meeting in Columbus, Ohio

As someone who’s still learning the ropes, I was excited to attend my first science writers meeting in Columbus this weekend. The National Association of Science Writers (NASW) and Council for the Advancement of Science Writing (CASW) organized the meeting, which included a nice variety of professional development workshops, briefings on the latest scientific research, and some field trips. It included a couple parties at a nearby brewery too, so I knew I was in good company, and I was happy to make some new friends and contacts. Here’s my name tag, which was a convenient little book of the program (and you can guess who I wrote down as my science hero):

photo 1

I’ll give you some highlights of a couple sessions that interested me. People “live-tweeted” most of the sessions too at #sciwri14.

NASW Meeting

One of the most useful sessions for me was the “pitch slam,” where writers had a single minute to pitch a story idea to editors, who gave feedback in real time. (The editors came from Slate, NPR, Popular Science, Discover, NOVA, Scientific American, and New York Times.) Speaking in front of the microphone understandably made people nervous, but I think I heard some pretty good pitches. Since I’m trained as a scientist, my approach to a science story or issue is to keep asking questions, but it sounds like editors want answers too! It’s important to be concise and clearly state at the beginning what the narrative thrust is and why the story is interesting. One should also describe the implications of the scientific result are why they’re surprising or new. Science stories need characters too, but that can come afterward. And one should keep in mind the audience of readers who would most likely read it, since some stories are more appropriate in particular news outlets rather than others. For example, Popular Science usually publishes “forward-looking” stories, so they’d be less interested in pieces focused on historical scientific advances.

The session on “diving into controversy and politics” was popular too, and it included Coral Davenport (New York Times), David Malakoff (Science Insider), and Nancy Shute (NPR). They spoke about hot-button topics in the news today—mainly climate change and Ebola. Davenport argued that climate change (along with energy and environment policy) is now a top-tier election issue and that this is mainly due to President Obama’s Environmental Protection Agency (EPA) regulations for coal-fired power plants, Tom Steyer’s money, and current weather events. She made a fairly convincing argument, but I think she overstated how new this development is, as fracking and the Keystone XL pipeline have been polarizing issues well before this midterm election campaign. Malakoff spoke about related topics and suggested that one should never pitch a “science policy” story (that is, one should frame the story differently). He pointed out that some stories are about a disagreement while others are about setting priorities. It’s important to state as clearly as possible who believes what and what their agenda is. We should ask whether the data and scientific results lead us to a particular policy prescription, and we should distinguish between scientists’ research and their opinions about which policy to advocate. We should write about the effects and impacts of particular policies, and then the reader can make his/her own decision.

The awards night took place on Saturday, and I was inspired to see so many excellent award-winning science writers. The winners included Azeen Ghorayshi for the Clark/Payne Award, Elisabeth Rosenthal for the Cohn Prize in medical science reporting, and the following Science in Society Journalism Award winners: Sheri Fink, Amy Harmon, Phil McKenna, Cally Carswell, and Charles Seife.

CASW Meeting

Getting back to climate change, on Sunday we toured the impressive Byrd Polar Research Center of Ohio State University. Lonnie Thompson and Ellen Mosley-Thompson, who have published numerous influential papers in Science and Nature, showed us the center and explained their research to us, which involves many fields but especially ice core climatology. Since the 1970s, they have conducted research at the poles as well as on mountains near the equator (in Peru and Tibet), where they drill down and pull up the ice cores, then bring them down the mountain on yaks and trucks and eventually store them in a huge freezer, which you can see below. (Our brief tour of the freezer was the only time I wore my hat on this trip.) Drs. Thompson and Mosley-Thompson use the ice cores to infer details about the climate and history of a particular regionTEXTsort of like using tree rings. For example, from ice cores taken from Kilimanjaro, they found evidence of a 300-year drought 4000 years ago (evidenced by less snow and ice accumulation), which would have had a dramatic effect on societies at the time. With rapid climate change, unfortunately the glaciers are rapidly retreating, but a silver lining is that they’ve uncovered 5000 to 6000-year-old plants!

photo 7

Finally, I had looked forward to the discussions of the ongoing BICEP2 controversy, and I was not disappointed. Marc Kamionkowski (Johns Hopkins University) gave an excellent overview of the basics of cosmology, the expanding universe, cosmic microwave background radiation (CMB), which is sort of an “afterglow of the Big Bang.” Many collaborations using different telescopes (including researchers at UC San Diego) seek to detect CMB “B-mode” polarization of the CMB due to primordial gravitational waves, which would constitute evidence supporting the rapid “inflation” of the early universe and would be a momentous discovery! At the BICEP2’s press conference in March at Harvard and in the preprint, the scientists did say “if confirmed…”, but of course everyone was excited about the implications of the result. However, new measurements from the Planck collaboration (see below) suggest that the polarization might not be due to the CMB’s gravitational waves but to foreground emission from dust grains in our own galaxy, though their calculation of the dust contribution is highly uncertain.

Map

A short discussion with Matthew Francis (freelance) and Betsy Mason (Wired) followed Kamionkowski’s talk, where they tackled questions that scientists and science communicators frequently face. Scientists want press attention and news outlets want headlines, so how should one describe and report caveats and uncertainties, especially when the implications (if confirmed) are so exciting? What is the best way to express skepticism of a particular aspect of a scientific result? And a question that I often ask: how can we communicate the messiness or “self-correcting” nature of science? In any case, we’ll all continue to follow the ongoing CMB debate in the scientific community and the media.

Now I’m looking forward to doing much more writing (and reading) and to participating in next year’s meeting!

Three Astrophysicists (including me) Meet with Congresswoman Davis

Last Tuesday, three weeks before the midterm election, three astrophysicists—graduate students and Ph.D. candidates Darcy Barron and Evan Grohs and I (a research scientist)—met with Representative Susan Davis (CA-53) and her staffer, Gavin Deeb. We had a twenty-minute meeting to talk about science in her district office in North Park, San Diego, which is on Adams Avenue and biking distance from my home. Darcy and I are her constituents, while Evan is a constituent of Rep. Scott Peters (CA-52), who is also a science advocate but is in a tight election race.

photo 1

I enjoyed participating in the Congressional Visit Day in Washington, DC, earlier this year (and Darcy had previously participated in the program too). In March, Josh Shiode (AAS Public Policy Fellow) and I had a short meeting with Rep. Davis and one of her DC staffers. This time in her San Diego district though, we had more time to chat. As before, she was very receptive to our message for federal investment in basic research, education and public outreach in the astronomical sciences and in science in general.

The current science budget situation and constraints from the ongoing “sequestration” leaves Congress and the Executive branch with little wiggle room, but we need to make the best of a bad situation. Otherwise, the US risks dropping behind Europe, Japan, and China in astrophysics research and in educating the next generation of scientists. Most federal funding for astronomy and astrophysics comes from the National Science Foundation (NSF), NASA, and the Department of Energy (DOE) Office of Science. Rather than improving and increasing these agencies’ constrained budgets, unfortunately Congress became mired in gridlock with little time before the election, and to avoid another government shutdown, Congress members had to vote on a “continuing resolution,” which basically keeps the budget on autopilot. Unless budget negotiations become an immediate priority after the election, it seems we’ll have to wait until FY 2016 to try to improve science budgets.

Rep. Davis stressed the importance of science communication, outreach, and improving diversity of the scientific workforce, and we were all in agreement about that. Communicating science to the public well helps to remind people how awesome science is and how important our investment in it is. And in our outreach efforts, the young and diverse students we reach and hope to inspire will be the people who advance science in the future. Rep. Davis was clearly interested in these issues and supportive of our and our colleagues’ work on them.

A couple months ago, Senator J. Rockefeller (D-WV), chair of the Committee on Commerce, Science, and Transportation, introduced the America COMPETES Reauthorization Act of 2014. According to the Association of American Universities, the bill calls for “robust but sustainable funding increases for the [NSF] and National Institute of Standards and Technology” (NIST) and it “recognizes the past success and continuing importance of the NSF’s merit review process.” It also supports each agency’s efforts to improve education of future science, technology, engineering, and math (STEM) professionals. But as Jeffrey Mervis of Science points out, support for COMPETES wasn’t sufficiently bipartisan and hasn’t been reauthorized.

On the other hand, perhaps there’s a better chance of Congress reauthorizing the Higher Education Act. The HEA is the major law that governs federal student aid, and it’s been reauthorized nine times since Pres. Johnson signed it into law in 1965. Considering that at least 70% of US university graduates are burdened with debt, this is clearly important. The HEA bill, introduced by Sen. Harkin (chair of the Health, Education, Labor and Pension Committee), would provide some relief for students by increasing state contributions to public universities (and thereby reduce tuition fees), supporting community colleges, and expanding programs that allow high school students to earn college credits. Disagreements between Democrats and Republicans remain on this bill, and we’ll have to wait and see in what form it will be passed.

We didn’t get into all these details, but I just wanted to give you some context. We also briefly discussed the need for graduate education reform and for preparing graduate students for the difficult job markets they face. These issues aren’t addressed in the HEA, though that bill would benefit some grad students who would have decreased loan burdens.

In any case, we’ve got to continue our work and our scientific advocacy, and after the November election, we hope that Rep. Davis, Rep. Peters (or DeMaio), and other Congressional lawmakers can get back together and negotiate a better budget for basic research, education, and public outreach in the physical and social sciences.

People’s Climate March in San Diego

Yesterday afternoon was hot, sunny, and dry in southern California, and it was as great a time as any to draw attention to climate change and demand action on it. I was one of 1,500 people who participated in the People’s Climate March and rally in San Diego, which started at City Hall and the Civic Center, went down Broadway past the train station, and ended at the County Administration Park.

09.21.14_civic_center_crowd_t670_t658

It was exciting and inspiring to be involved in what may have been the largest climate protest in history. At least 300,000 people participated in the march in New York, where the UN climate summit is taking place. According to a speaker for SanDiego350, which was one of the groups organizing the local events, there were marches and rallies in over 3000 cities around the world. They were also widely reported in the media, for example in the New York Times, LA Times, Guardian, and Democracy Now. I’m not a good photographer, so I grabbed the photo above from the SD Reader and the NYC photo below came from the Guardian. I’m sure there were a few differences between the people participating in the SD and NYC protests, as I saw many people wearing flip-flops, heard chants of “¡Si Se Puede!”, and saw a few Mexican wrestler masks too.

63a815be-5a7d-481b-8ac5-1aec638c70e6-680x1020

From what I could see, it was a very diverse crowd in terms of gender, race, class, and age. Climate change is now more than just an environmental issue—many people from unions, religious groups, and students and teachers attended too. People held signs and yelled chants saying a variety of things: demands for clean energy, green jobs, climate justice, and an end to fracking were common. As I mentioned in my previous post, many Californians are concerned about drought and water policies too, and I saw a few signs about these issues as well. Although we can see widespread support for action on climate change, it’s clear that conservatives and Republicans didn’t show up; climate change has become an increasingly partisan issue in the US over the past few years.

Organizers had great speakers and musicians at the beginning, middle, and end of the march. Many political leaders attended, including Rep. Susan Davis, the Congressional representative for our district. Speakers included: Todd Gloria, City Council president and former interim mayor, who gave a rousing speech to kick off the march; Nicole Capretz, Director of Environmental Policy for the city, who cited labor, women’s rights, and civil rights movements as inspiration; Monique Lopez, Environmental Health Coalition advocate, and City Council member David Alvarez. (More details about the speakers are here.)

Capretz and Gloria outlined their Climate Action Plan, which includes ambitious goals in five areas: energy and water efficient buildings; clean and renewable energy; biking, walking, and transit; zero waste; and climate resiliency. From what I can tell, their emphasis is on the first three prongs. The plan would cut San Diego’s greenhouse gas emissions by 15% by 2020 and nearly half by 2035. More than half of San Diego’s GHG emissions come from transportation, which is why investment in public transit, bike- and pedestrian-friendly areas, incentives for car-pooling, and other related measures are important. However, the plan already faces some resistance from business groups, who only approve of voluntary, incentive-based programs (but not mandatory measures) to get property owners to pursue upgrades to improve buildings’ water and energy efficiency. Mayor Kevin Faulconer is preparing to release his own version of the plan. If it’s watered down, I think he can expect San Diegans to organize more climate marches in the future.

[Although I’m a scientist and always try to lay out the facts in my blog posts, I want to be clear that I’m speaking my personal opinions here.]

Nuclear (non)proliferation and the Security of Earth

We all want global security, since at least for now, the Earth is the only planet we’ve got. In the words of The Tick (in the 1990s cartoon), “You can’t blow up the world…That’s where I keep all my stuff!”

MV5BMTU1OTc0MDA3OV5BMl5BanBnXkFtZTcwMzI4NTQzMQ@@._V1._CR0.883331298828125,1.5333404541015625,351,459_SY317_CR14,0,214,317_AL_

In my previous post, I ended by raising the issue of the political scientist James Doyle, who was apparently fired from the Department of Energy’s (DOE’s) Los Alamos National Laboratory (LANL) in New Mexico after publishing a scholarly article questioning US nuclear weapons doctrine and defending President Obama’s goal of a nuclear weapons-free future. James Doyle’s article was titled “Why Eliminate Nuclear Weapons?,” and I’ll give you an extended quote from its conclusions, as it’s written rather well:

The marginal contribution that nuclear deterrence now makes to the absence of major aggression between great powers is being purchased at too high a price. That price is the constant risk that a complex, tightly coupled and largely automated system subject to normal, systemic and human error will, as science tells us, inevitably fail, and fail catastrophically, with unprecedented and unjustified loss of civilian life…Nuclear weapons are useless for confronting and resolving the most likely future international security challenges, but steady progress towards the elimination of such weapons can help nations confront these transnational problems…[E]limination of nuclear weapons will allow creative, intellectual, technical and financial resources now devoted to nuclear threats to be focused toward the resolution of transnational crises faced by all nations. As nuclear weapons are drawn down those resources can be re-focused toward developing clean energy, carbon-capture technologies, clean water management and low-impact, high-productivity agriculture.

The Federation of American Scientists (FAS) is calling on Energy Secretary Ernest Moniz to get involved in the case. According to Science journal, the lab recently made the following statement: “James Doyle’s separation from Los Alamos National Laboratory was a layoff due to the lack of available or anticipated funding in his area of expertise. The separation was unrelated to his publications or professional writings.” Many external arms control specialists are skeptical and believe Doyle’s downfall is the result of his airing of views that are unpopular among those opposing disarmament, including some of the Armed Services Committee’s Republican leaders and staff. And if you’re curious about how many resources LANL spends on weapons activity versus nonproliferation, take a look at the following graph (reported by the Center for Public Integrity).

chart

Although nuclear weapons (and “mutually assured destruction”) seem like a Cold War issue and a thing of the past, they’re as relevant as ever today. In and near the Middle East, where Israel, Pakistan, and India have nuclear weapons, proliferation is a real concern. In addition, according to Newsweek, countries in Russia’s neighborhood are now considering nuclear deterrence. Altogether, the US possesses 2,104 (active) nuclear warheads, Russia has a similar number, and numerous other countries have hundreds either mounted on planes or on submarines. Germany will not continue its nuclear-hosting duties beyond the 2020s, and a Central European official was recently quoted as saying, “If the Germans don’t want [the bombs], we’ll take them.”

According to Scientific American, the FAS begin with the “scientists’ movement” in the mid-1940s when many scientists who had worked on the Manhattan Project recognized that they had a special responsibility to educate policymakers and the public about the implications of nuclear energy and nuclear weapons. (Carl Sagan, who is one of my heroes, had served on FAS’s advisory council and was a leading scientist devoted to reversing the nuclear arms race.) The FAS’s Nuclear Weapons Database is one of the most reliable sources on global nuclear arsenals, and the numbers in the previous paragraph were obtained from it. As far as we know, the US is not developing new nuclear weapons, but unfortunately it’s improving the weapon delivery systems (see this report from the Union of Concerned Scientists). This does not aid the goals of nonproliferation and reducing nuclear weapons, nor does the US’s nearly 500 land-based missiles on “hair-trigger” alert.

As I’ve mentioned in a previous post, nuclear weapons are also relevant to space security and to the risk of a space arms race. Although deploying nuclear weapons in space may be prohibitively expensive and are a violation of the Outer Space Treaty, certain nuclear missiles could have trajectories outside of the Earth’s atmosphere, and anti-satellite missiles are another concern. In any case, space weapons—nuclear or otherwise—increase tensions between countries and increase the risk of conflict.

Another related issue is the Nuclear Nonproliferation Treaty (which, by the way, has never been signed by India, Israel, and Pakistan). In the 21st century era of worsening climate change, we need alternatives to fossil fuel-based energy, but nuclear energy surely is not ideal. It’s not clear how much, if it all, nuclear energy should play a role in our transition to a fossil fuel-free economy. Even in Iran, where there is an apparent abundance of oil, people are trying to prepare for the transition, and as in other places, they have turned to nuclear energy. An additional concern is that developing nuclear energy technologies produces a pathway for countries to develop nuclear weaponry as well; unfortunately, we’ve seen other countries follow this path already. In the case of Iran, as usual, what is required is a diplomatic and political settlement. As argued in a report by the FAS and the Carnegie Endowment for International Peace, by offering Iran cutting-edge alternative energy technologies, especially to take advantage of the country’s solar energy potential, a positive precedent could be set for other nuclear-hopefuls.

Journalism and Science Groups Criticize EPA’s Policy Muzzling Science Advisers

As reported by the Associated Press and The Hill, a coalition of journalism and science groups are criticizing the US Environmental Protection Agency (EPA) to end a policy of restricting independent science advisers from contacting and communicating with media outlets, Congress, and others, without permission. The organizations include the Union of Concerned Scientists (UCS), Society of Environmental Journalists (SEJ), American Geophysical Union, Society of Professional Journalists, Society for Conservation Biology, Investigative Reporters and Editors, and Reporters Committee for Freedom of the Press. (Full disclosure: I am a UCS member and obtained some of my information from them.)

epa_logo

In a letter sent to the agency last week, they said that the new policy

requir[es] advisory committee members who receive requests from the public and the press ‘to refrain from responding in an individual capacity’ regarding issues before the committee. The policy requires all requests…to be routed through EPA officials. This prevents many of our nations top independent environmental science experts from sharing their expertise, unfiltered, with the public…The new policy undermines EPA’s efforts to increase transparency. It also contradicts the EPA’s new scientific integrity policy…[It] only reinforces any perception that the agency prioritizes message control over the ability of scientists who advise the agency to share their expertise with the public. On July 8, 38 journalism and good government organizations wrote the president expressing concern about ‘the stifling of free expression’ across many agencies, including the EPA.

The language of the policy is sufficiently vague that it would be easy for a scientist to interpret it such that she or he can’t speak publicly about any scientific issue under consideration. In addition, as pointed out by Andrew Rosenberg, scientists who work for the EPA also face barrier in communicating with the public.

What are the implications of this and why is it important? As the letter points out, this is clearly related to the issue of scientific integrity. We need scientists to serve on advisory committees, work with agencies and policy-makers, and speak transparently about their work and expertise, but such policies will discourage some from participating and will make the EPA less democratic. Government agencies, journalists, and the public deserve access to independent advice and free speech of scientists. (However, we scientists should be careful about speaking about issues beyond our expertise.) That way agencies can make informed decisions when developing or reforming relevant policies and regulations, and journalists and the public can form their own opinions about them as well.

In an update on the situation, the EPA Chief of Staff Gwendolyn Keyes-Fleming responded to say that their Science Advisor, Dr. Bob Kavlock, would review the matter and engage with people in the organizations involved. Let’s hope that the dialogue results in changing the policy.

600px-US-DeptOfEnergy-Seal.svg

Finally, in recent related news, political scientist James Doyle says that he was fired from the Department of Energy’s (DOE’s) Los Alamos National Laboratory (LANL) in New Mexico after publishing a scholarly article questioning US nuclear weapons doctrine. They claimed that the article, criticizing the political theories behind the nuclear arms race and a defense of President Obama’s embrace of a nuclear weapons-free future, contained classified information. (We should note though that unfortunately the DOE’s policy on scientific integrity is much shorter and may be more restrictive than the EPA’s.) I’ll keep you updated on this situation, and time permitting, I may write about it further in another post.

Climate Change Resilience and Governance: Preparing for the Effects of Global Warming

I just came back from Washington, DC, where I attended an AAAS meeting on Climate Change Resilience and Governance, which included speakers from local governments and federal government agencies, nongovernmental organizations (NGOs), industry, and academic researchers. The meeting’s program is here. I’ll summarize the presentations and debates that I found interesting, but if there are others you’d like to hear more about, let me know. By the way, I should do this more often when I write about conferences, but the hashtag participants used is #RGR14.

First I’ll tell you what we mean by resilience and governance, then I’ll mention a couple important new developments that people talked about throughout the conference, and then I’ll tell you about some of the major issues and themes we discussed. If you don’t want to read all the details below, the major issues included these: the framing of climate change with different people; water issues, including droughts and floods; responding and recovering from disasters; and economic issues.

Before I continue, I’d also like to point out that, thanks to the efforts of the organizers, the program was very diverse, with speakers and participants with a variety of backgrounds and coming from a variety of places. In addition, women constituted nearly two thirds of the speakers, and more than 10% of the speakers were people of color. There were even back-to-back sessions of all-women speakers. (This is much better than the physics and astrophysics conferences I usually attend; see this post for more on diversity issues in science.)

key terms and definitions

If you’re interested in my previous posts about climate change issues, including an introduction to the concept and implications of climate change, look here. I and others usually focus on climate change mitigation, since we’re working to avoid the worst of climate change and reduce its many potentially harmful effects. Nonetheless, we know that the climate is changing and our planet is warming. Even with radical and politically unlikely changes to our fossil fuel-based economic system, we still have to contend with the greenhouse gases we’ve already emitted, which will warm the planet by an average of at least 1.5 or 2 C this century, according to the recent report by the Intergovernmental Panel on Climate Change (IPCC). Therefore, we need to adapt to the expected consequences. Let’s be clear though: we need to work on both mitigation and adaptation simultaneously (a point explicitly made by Susan Ruffo, of the White House’s Council on Environmental Quality).

“Resilience” is similar to “adaptation,” though it sometimes refers to efforts to restore things back to normal after a weather-event or climate-related disaster, but as some speakers pointed out, in the future we may be adapting to a new normal. “Governance” refers to actions being taken by local, national, and international governments, and it’s of course related to politics and policy. At the meeting last week, it was Laura Petes (an advisor at OSTP) who defined these terms (and see this executive order for official government definitions).

the context

The US Global Change Research Program released its third National Climate Assessment (NCA) in May. The NCA was a major five-year undertaking by hundreds of climate scientists and is both comprehensive and detailed. It’s US focused, unlike the international IPCC reports, though both make for sober reading. It includes studies of the looming climate change effects across the US (such as effects on water resources, agriculture, transportation, urban systems, rural communities, etc.) and within particular regions of the country. (The report also received considerable media attention, such as Phil Plait’s article on Slate.) The NCA’s interactive website is very useful, well organized, and worth checking out. The last of its key findings is the following:

Planning for adaptation (to address and prepare for impacts) and mitigation (to reduce future climate change, for example by cutting emissions) is becoming more widespread, but current implementation efforts are insufficient to avoid increasingly negative social, environmental, and economic consequences.

NCA3_overview_p14

The report includes an entire chapter dedicated to adaptation, which describes examples of actions being taken by federal agencies, states, cities, NGOs, and the private sector, and outlines the next steps, including the identification of critical adaption threshold or “breakpoints” beyond which social or ecological systems are unable to adapt to climate change.

In addition, a week ago the Environmental Protection Agenca (EPA) announced new power plant carbon standards. According to Ken Kimmell of the Union of Concerned Scientists (UCS), this is a potential game changer. As you can see in the following graph, power plants, especially coal-fired ones, dominate our carbon emissions, and these standards could reduce those emissions by half by 2030 (to less than a million metric tons of CO2). The EPA and its administrator, Gina McCarthy, should be applauded for taking this important first step. The new standards must be combined with major efforts to ramp up renewable energy technologies and improved energy efficiency, and they will require strong leadership from the states. As argued by Vivian Thomson (professor at U. of Virginia) at the meeting, California, New York, and Washington are among the “active states” on climate change, and most of the rest of the country can do much much more.

SectorEmissions1990To2012_GHGInventoryReport2014
Power-plant-carbon-dioxide-emissions-chart

framing

A number of speakers argued that we should be careful about how we frame these issues when interacting with different communities and different sectors of the public. For example, some people react different when they hear “global warming” versus “climate change.” Some people can be turned off by hearing either of these, but they will be receptive when they hear about energy efficiency and ways to reduce their family’s gas and electricity bills. In addition, terms like “sustainability,” “smart growth,” and “resilience” may be too vague, but “risk reduction” in a specific context can be clearer, for example.

water

I’ve written before on water policy issues in the southwest , where we’re always talking about drought, but in the east, people are worried about floods and stormwater. Water issues are perhaps the most important of those facing us, and it’s no surprise that the NCA devoted two chapters to water resources and interactions between water, energy, and land use. I should note that climate change affects the food supply as well, through agriculture, fish catch, rising food prices, and so forth.

NCA3_water_Fig11

Many speakers spoke about water issues. Susan Leal (who co-authored a book, Running Out of Water) pointed out that most people take water and wastewater for granted, but maybe the shouldn’t. We should expect water rate payments to increase in the future. Pilar Thomas, who works with the Department of Energy, spoke about the water-energy nexus and the vulnerability of energy systems. She also spoke about water law and water rights, since disputes between states, tribal communities, and the private sector about water will surely increase in the future. I asked a question about preparing for future droughts, and these speakers argued that we can gain much from reduced water usage in agriculture and the food industry; water recycling in urban areas; and maybe we should try again to have “Meatless Mondays,” since producing a pound of animal protein requires, on average, about 100 times more water than producing a pound of vegetable protein (and beef is the worst).

environmental justice

I was happy and impressed that many speakers, especially Jalonne White-Newsome (WE ACT for Environmental Justice), Michael Dorsey (member of EPA’s National Advisory Committee), and Barbara Allen (professor at Virginia Tech) discussed important issues of environmental justice, injustice, and inequality. In my opinion, we don’t talk about these issues enough, and we certainly aren’t adequately addressing them. If you’re interested in learning more about environmental justice (EJ), see my recent post about the issues involved.

Currently EJ communities are not engaged in the process, argues Dr. White-Newsome, and the failure to mobilize the majority of Americans to want action on climate change is partly due to the fact that not everyone is part of the conversation. Many black, Latino, and Native American communities, as well as working class white communities, live closer to power plants, land fills, oil drilling platforms, polluting industries, etc., and are in more vulnerable areas, such as those that will be affected by rising sea levels, droughts, fires, hurricanes, and so on. Dr. Dorsey talked about the injustice of extreme weather events, such as Hurricanes Katrina and Sandy, which should not be seen as “acts of God.” (He also had a way with words; at one point he referred to “persistent corporate sociopathy.”) Dr. Allen argued that we need endogenous ideas for transforming a community, such as when a community is rebuilding following a weather event, but if green technologies and buildings seem like too external to people, then they won’t “take” and will be less popular and successful.

disasters

A couple speakers, such as Sabrina McCormick (professor at George Washington U.) and Dr. Allen, talked about the benefits and perils of “disaster thinking.” It can be dangerous to think of climate change as a series of disasters; we might benefit from seeing the opportunities for improvement, such as by appealing to people’s self-interest. (For example, because of successful incentives, Germans now associate climate change and renewable energy with ways to make money.) Nonetheless, we can expect more weather events, flooding, and temperature extremes in the future. In fact, and this was new to me, heatwaves kill more people than all other weather events combined! Young children and people over 65, especially those on the top floors of poorly cooled buildings in dense urban areas, are among the most vulnerable. Simple solutions like white-painted roofs can save many lives.

“it’s the economy, stupid”

Finally, a few people, especially David Orr (author of seven books and professor at Oberlin), Kate Sheppard (reporter at Huffington Post), and Gar Alperovitz (writer and professor at U. of Maryland), talked about economic issues and policies. Dr. Orr discussed the relation between carbon emissions, climate change adaptation, and economic systems and unequal wealth distributions. He warned that, if the current political culture doesn’t change, “when times get rough, humans get nasty”—fairness goes out the window. Katrina is just an example of what’s to come. What will governments have to do when sea levels rise to get people out of harm’s way? It will help if we begin to think more like a community. We’re all in this together, but as it is now, the 7% richest people are responsible for half of carbon emissions, while the costs of climate change are being outsourced to the third world and future generations. Dr. Orr also asked a couple provocative questions: Is our capitalist system resilient and sustainable? Is democracy sustainable? (He asked this in the context of a point that Exxon-Mobil could legally burn all of their reserve fossil fuels and single handedly take us all past the tipping point.) While specific questions about responding to the next big storm are important, we should also be asking these big questions about systemic challenges, since climate change is likely the biggest crisis of our time.

My Experience with the Congressional Visit Day

[A previous version of this first appeared as a Guest Post on the AAS Policy Blog.]

Last week, I participated in the Congressional Visit Day (CVD) with the American Astronomical Society (AAS). I was just one member in a group of eighteen AAS members—a diverse group from around the country involved in many different subspecialties of astronomical research, as well as various teaching and outreach programs. Below, is a nice photo of us is (and I’m the guy wearing a hat). Our AAS delegation was part of a larger group of scientists, engineers, and business leaders involved in a few dozen organizations participating in the CVD, which was sponsored by the Science-Engineering-Technology Work Group. Go here for a further description of our program.

aas_cvd_2014

As scientists and members of the AAS, we had a few primary goals. We argued first and foremost for the importance of investing in scientific research (as well as education and outreach) through funding to the National Science Foundation (NSF), NASA, and science in particular departments (especially the Depts. of Energy and Defense). If you’re interested, you can see our handout here. We also encouraged our Representatives to sign two “Dear Colleague” letters that are currently passing through the House: the first letter is by Rep. G. K. Butterfield (D-NC) and is asking for a 3% increase to NSF’s FY 2015 budget to $7.5 billion, and the second letter is by Rep. Rush Holt (D-NJ), Rep. Randy Hultgren (R-IL), and Rep. Bill Foster (D-IL) and is asking the appropriators to “make strong and sustained funding for the DOE Office of Science one of your highest priorities in fiscal year 2015.”

We also told our Congress members about our personal experiences. In my case, I have been funded by NASA grants in the past and am currently funded by a NSF grant. I am applying for additional research grants, but it’s not easy when there is enough funding available only for a small fraction of submitted grant proposals. In the past, I have also benefited from projects and telescopes that were made possible by NASA and the NSF, and I plan to become involved in new telescopes and missions such as the Large Synoptic Survey Telescope (LSST), the Wide-Field InfraRed Survey Telescope (WFIRST), and possibly the James Webb Space Telescope (JWST, the successor to the Hubble Space Telescope). Also, if a NSF grant I’ve submitted is successful (fingers crossed!), I will be able to participate more actively in public outreach programs especially in the San Diego area in addition to continuing my research.

Not only did we explain the importance of stable funding for basic research, we also talked with our legislators about how astronomy is a “gateway science” that draws people in and inspires them to learn more, become more involved, and even potentially become scientists themselves.

We talked about the importance of improving science and math literacy, which also improves US competitiveness with respect to other countries, and about how investment in science spurs innovation in industry and leads to new and sometimes unexpected developments in computing, robotics, optics, imaging, radar, you name it. Since “all politics is local,” as they say, we also emphasized that these investments in scientific research are important for strong local, as well as national, economies. As we were visiting shortly after the introduction for the President’s Budget Request (PBR) for FY 2015, we also expressed our concern that the proposed budget reduces funding for NASA’s education and outreach activities within the Science Mission Directorate by two-thirds, and would require mothballing the Stratospheric Observatory For Infrared Astronomy (SOFIA) outside of the well-established senior review process.

My Congress members are Senators Barbara Boxer and Dianne Feinstein, whose staff we met, and Representative Susan Davis (CA-53), with whom we met personally (along with a member of her staff). We had a quick photo-op too, right before she had to get back to the House chamber for a vote. I was in a group with two other astronomers who were from Oklahoma and Illinois, and we met with their respective Congress members as well. Our larger group was split into teams of three to four for the days visits, and each met with the representatives and senators of all team members.

photo 4

Senators and Representatives serve on different committees and subcommittees, each with a specific jurisdiction over parts of the federal government. For example, Sen. Boxer is on the Science & Space Subcommittee of Senate’s Commerce Committee and is the chair of the Committee on Environment & Public Works. Sen. Feinstein is chair of the Senate Appropriations Committee’s Subcommittee on Energy & Water, which has jurisdiction over the Department of Energy (among many other things). The appropriations committee is responsible for writing legislation that grants federal agencies the ability to spend money, that is, they appropriate the budgets for the agencies under their jurisdiction. Rep. Davis is a member of the House Education & Workforce Committee and has done a lot of work on educational reform, promoting youth mentoring, and civic education.

I think that we received a largely positive responsive from our congressional representatives. My three Congress members were very supportive and in agreement with our message. Some of the other members we met with, while generally positive about our message, left me with the impression that they approved of our “hard sciences” but didn’t want as much funding going to social sciences, climate science, and other particular fields. It seems to me that we must get ourselves out of this highly constrained budget environment, in which discretionary programs like those funding the sciences are capped each year; we need to either find additional sources of revenue (e.g., reducing tax breaks) or make other changes to current law.

In my previous blog post, I talked about the proposed budget and the negotiations taking place in Congressional committees. We also need to consider the current political situation with the upcoming mid-term elections. Once a budget (which may be significantly different than the PBR) is passed by the House and Senate Appropriations Committees, it will be considered by the House and Senate, which are currently controlled by Republicans and Democrats (who have 53 seats plus 2 independents who caucus with them). However, it appears possible that Republicans may retake the Senate in the 114th Congress, and in that case their leadership may resist even small additions to the current budget request and may attempt to simply pass a “continuing resolution” instead.

On the same day as our CVD (26th March), Office of Science and Technology Policy Director John Holdren appeared before the House Committee on Science, Space, and Technology, where there were considerable disagreements among the committee members about STEM education, SOFIA, and other issues. (Note that the committee is particularly polarized and has been criticized for its excessive partisanship and industry influence.) Fortunately, on the following day, a hearing before House appropriators on the NSF budget request fared better. This is encouraging, but in any case it will be a difficult struggle to produce a good budget (that is, good for science) within a short time-scale.

More from the AAAS meeting

The second half of the AAAS meeting in Chicago was interesting too. (I wrote about the first half in my previous post.)

alda-160x220

Probably the best and most popular event at the meeting was Alan Alda’s presentation. You’ll know Alan Alda as the actor from M*A*S*H (and recently, 30 Rock), but he’s also a visiting professor at the Alan Alda Center for Communicating Science at Stony Brook University. He gave an inspiring talk to a few thousand people about how to communicate science clearly and effectively in a way that people can understand. He talked about how one should avoid or be careful about using jargon. Interaction with the audience is important, and one can do that by telling a personalized story (with a hero, goal, and an obstacle, which develops an emotional connection), or by engaging with the audience so that they become participants. It’s also important to communicate what is most interesting or exciting or curiosity-piquing about the science, but in the end, the words you use don’t matter as much as your body language and tone of voice. It’s also good to develop improvisation skills, so when a particular explanation or analogy doesn’t appear to work well with the audience, you can adapt to the situation. He referred to the “curse of knowledge”, such that as scientists we forget what it’s like not to be experts in our particular field of research. That can be an obstacle when interacting with most segments of the public, Congress members and other politicians (most of whom aren’t scientists or haven’t the time to become familiar with the science), and even with scientists in other fields. Most of all, one needs to be clear, engaged, and connected with one’s audience. Finally, Alda told us about the “flame challenge
–challenging scientists to explain flames and other concepts for 11-year olds to understand. (The kids are also the judges of the competition.) If the video of Alda’s talk becomes available online, I’ll link to it here for you.

I attended an interesting session on climate change and whether/how it’s possible to reduce 80% of greenhouse gas emissions from energy by 2050. As pointed out by the chair, Jane Long (who is one of the authors of this report), our energy needs will likely double or even triple by then, while we must be simultaneously reducing carbon emissions. Peter Loftus discussed this issue as well, and showed the primary energy demand as well as energy intensity (energy used per unit GDP) have been rapidly increasing over the past twenty years, partly due to China. But to obtain substantial carbon reductions, the intensity needs to drop below what we’ve had for the past 40 years! We need to massively add to power generation capacity (10 times more rapidly than our previous rates), and it might not be feasible to exclude both nuclear and “carbon capture” in the process. Karen Palmer gave an interesting talk about the importance of energy efficiency as part of the solution, but she says that one problem is that it’s still hard to evaluate which policies best promote energy efficiency as well as ultimately energy savings and carbon emission reductions. Richard Lester made strong arguments about the need for nuclear power, since renewables might not be up for the task of meeting rising energy demands in the near future. This was disputed by Mark Jacobson, who pointed out that nuclear power has 9-25 times more pollution per kW-hour than wind (due to mining and refining) and it takes longer to construct a plant than the 2-5 years it takes to build wind or solar farms. Jacobson also discussed state-by-state plans: California benefits from many solar devices, for example, while some places in the northeast could use offshore wind farms. In addition, such offshore arrays could withstand and dissipate hurricanes (depending on their strength), and WWS (wind, water, solar) could generate about 1.5 million new jobs in the U.S. in construction alone. Different countries have very different economic situations and carbon footprints, so different solutions may be needed.
CO2em_percapita

I caught part of a session on “citizen science” (see my previous post). Chris Lintott spoke about the history of citizen science and about how the internet has allowed for unprecedented growth and breadth of projects, including the numerous Zooniverse projects. Caren Cooper discussed social benefits of citizen science, and Carsten Østerlund discussed what motivates the citizen scientists themselves and how they learn as they participate. Lastly, Stuart Lynn spoke about how the next generation of citizen science systems can be developed, so that they can accommodate larger communities and larger amounts of data and so that people can classify billions of galaxies with the upcoming Large Synoptic Survey Telescope, for example.

Finally, there was another interesting session on how scientists can work with Congress and on the challenges they face, but more on that later…

Reporting from the American Association for the Advancement of Science (AAAS) meeting

I’d like to tell you about the AAAS meeting I’m attending. (Look here for the program.) It’s in Chicago, which is definitely much colder than southern California! I know it might sounds strange, but it’s nice to experience a real winter again.

There were some astrophysics sessions (such as on galaxy evolution in the early universe and dark matter particles) but that wasn’t my focus here. I took some brief notes, and this is based on them…

There were a few sessions about science communication, outreach, and media. These are very important things: for example, according to Rabiah Mayas, the best indicator of whether people participate in science or become scientists as adults is the extent to which they engaged in science-related activities outside of school as kids. One person discussed the importance of fact-checking for producing high-quality and robust science writing, but it takes time; one should note that peer-review in scientific research is supposed to perform a similar purpose, though it can be time-consuming as well. In any case, many people agreed that scientists and journalists need to interact better and more frequently. (As a side note, I heard two high-profile science journalists mispronounce “arXiv”, which is pronounced exactly like “archive”.) In addition, it’s worth noting that smaller regional newspapers often don’t have dedicated science desks, though this could provide opportunities for young writers to contribute. There was also an excellent talk by Danielle Lee about “Raising STEM Awareness Among Under-Served and Under-Represented Audiences,” who talked about ways to take advantage of social media.

There were interesting presentations about scientists’ role in policy-making, but I’ll get back to that later. Someone made an important point that scientists should be extremely clear about when they are just trying to provide information versus when they are presenting (or advocating) policy options. I should be clearer about that myself.

I also saw interesting talks by people about public opinion surveys in the U.S. and internationally of knowledge and opinions of science and technology. According to these polls, although some Americans are worried about global warming/climate change, people are more worried about toxic waste, water and air pollution. According to Lydia Saad (of Gallup), 58% of Americans worry a “great deal” or “fair amount” about global warming, 57% think human activities are the main cause, 56% think it’s possible to take action to slow its effects, while only 34% think it will affect them or their way of life. In addition, she and Cary Funk (of Pew) found huge partisan gaps between self-identified Democrats, Independents, and Republicans. As one person pointed out, climate change is not just a science issue but has become a political one. Americans in polls had pretty high opinions of scientists, engineers, and medical doctors, but people had the best views of those in the military. There is a wide range of knowledge of science, especially when it comes to issues such as evolution. (Note that fewer Republicans believe in evolution by natural processes, due to a drop in those who are not evangelicals, who already had a low fraction.) Also note that the numbers depend on how poll questions are asked: for example, ~40% agree to, “The universe began with a huge explosion”, and when you add “according to astronomers”, then the proportion jumps up to 60%. (If you’re curious, this image basically describes astronomers’ current view of the Big Bang.)

bigbang

There was an interesting session dedicated to climate change science, which included scientists that contributed to the IPCC’s recent 5th Assessment Report (which we talked about in an earlier blog). Note the language they’re required to use to quantify their un/certainty: “virtually certain” means 99% certain, and then there’s “very likely” (90%), “likely” (67%), and “more likely than not” (>50%). Michael Wehner discussed applications of “extreme value statistics” (which are sometimes used analyze extremely luminous galaxies or large structures in astronomy: see this and this) on extreme temperatures. Extremely cold days will be less cold, while extremely hot days will be more common and hotter. For particular extreme weather events, one can’t say whether they’re due to climate change, but one can ask “How has the risk of this event changed because of climate change?” or “How did climate change affect the magnitude of this event?” It seems very likely that the there will be heavier heavy rainy days, longer dry seasons, and more consecutive dry days between precipitation events. There will be more droughts in the west (west of the Rockies) and southeast, and more floods in the midwest and northeast.

The plenary speaker today was Steven Chu, former Secretary of Energy until last year, who gave an excellent talk. He compared convincing people about climate change to earlier campaigns to convince people about the dangers of tobacco use and its connection to lung cancer; both issues have had industry-promoted disinformation as well. On rising temperatures with climate change, he channeled Yogi Berra when he said, “If we don’t change direction, we’ll end up where we’re heading.” He talked a little about the role of natural gas (see also these NYT and Science blogs), and he discussed carbon capture, utilization, and sequestration (CCUS). Finally, he talked about how one might determine an appropriate price of carbon. He advocated a revenue-neutral tax, starting at $10/ton and over ~12 years raising it to $50/ton, and then giving the money raised from this directly back to the public. He also talked about wind turbines, which are now more reliable, efficient, and bigger, and he predicted a 20-30% decline in price in the next 10-15 years. The cost of solar photovoltaic (PV) modules is also dropping, but installation costs and licensing fees (“soft costs”) should be reduced. I definitely had the impression that, now that Chu is no longer Energy Secretary, he could be more frank than before about his views on contentious issues.