Three Astrophysicists (including me) Meet with Congresswoman Davis

Last Tuesday, three weeks before the midterm election, three astrophysicists—graduate students and Ph.D. candidates Darcy Barron and Evan Grohs and I (a research scientist)—met with Representative Susan Davis (CA-53) and her staffer, Gavin Deeb. We had a twenty-minute meeting to talk about science in her district office in North Park, San Diego, which is on Adams Avenue and biking distance from my home. Darcy and I are her constituents, while Evan is a constituent of Rep. Scott Peters (CA-52), who is also a science advocate but is in a tight election race.

photo 1

I enjoyed participating in the Congressional Visit Day in Washington, DC, earlier this year (and Darcy had previously participated in the program too). In March, Josh Shiode (AAS Public Policy Fellow) and I had a short meeting with Rep. Davis and one of her DC staffers. This time in her San Diego district though, we had more time to chat. As before, she was very receptive to our message for federal investment in basic research, education and public outreach in the astronomical sciences and in science in general.

The current science budget situation and constraints from the ongoing “sequestration” leaves Congress and the Executive branch with little wiggle room, but we need to make the best of a bad situation. Otherwise, the US risks dropping behind Europe, Japan, and China in astrophysics research and in educating the next generation of scientists. Most federal funding for astronomy and astrophysics comes from the National Science Foundation (NSF), NASA, and the Department of Energy (DOE) Office of Science. Rather than improving and increasing these agencies’ constrained budgets, unfortunately Congress became mired in gridlock with little time before the election, and to avoid another government shutdown, Congress members had to vote on a “continuing resolution,” which basically keeps the budget on autopilot. Unless budget negotiations become an immediate priority after the election, it seems we’ll have to wait until FY 2016 to try to improve science budgets.

Rep. Davis stressed the importance of science communication, outreach, and improving diversity of the scientific workforce, and we were all in agreement about that. Communicating science to the public well helps to remind people how awesome science is and how important our investment in it is. And in our outreach efforts, the young and diverse students we reach and hope to inspire will be the people who advance science in the future. Rep. Davis was clearly interested in these issues and supportive of our and our colleagues’ work on them.

A couple months ago, Senator J. Rockefeller (D-WV), chair of the Committee on Commerce, Science, and Transportation, introduced the America COMPETES Reauthorization Act of 2014. According to the Association of American Universities, the bill calls for “robust but sustainable funding increases for the [NSF] and National Institute of Standards and Technology” (NIST) and it “recognizes the past success and continuing importance of the NSF’s merit review process.” It also supports each agency’s efforts to improve education of future science, technology, engineering, and math (STEM) professionals. But as Jeffrey Mervis of Science points out, support for COMPETES wasn’t sufficiently bipartisan and hasn’t been reauthorized.

On the other hand, perhaps there’s a better chance of Congress reauthorizing the Higher Education Act. The HEA is the major law that governs federal student aid, and it’s been reauthorized nine times since Pres. Johnson signed it into law in 1965. Considering that at least 70% of US university graduates are burdened with debt, this is clearly important. The HEA bill, introduced by Sen. Harkin (chair of the Health, Education, Labor and Pension Committee), would provide some relief for students by increasing state contributions to public universities (and thereby reduce tuition fees), supporting community colleges, and expanding programs that allow high school students to earn college credits. Disagreements between Democrats and Republicans remain on this bill, and we’ll have to wait and see in what form it will be passed.

We didn’t get into all these details, but I just wanted to give you some context. We also briefly discussed the need for graduate education reform and for preparing graduate students for the difficult job markets they face. These issues aren’t addressed in the HEA, though that bill would benefit some grad students who would have decreased loan burdens.

In any case, we’ve got to continue our work and our scientific advocacy, and after the November election, we hope that Rep. Davis, Rep. Peters (or DeMaio), and other Congressional lawmakers can get back together and negotiate a better budget for basic research, education, and public outreach in the physical and social sciences.

Rise of the Giant Telescopes

The biggest telescope ever constructed, the Thirty Meter Telescope (TMT), officially broke ground on Mauna Kea in Hawai’i on Tuesday. Building on technology used for the Keck telescopes, the TMT’s primary mirror will be segmented combining 492 hexagonal reflectors that will be honeycombed together, and it will have an effective diameter of 30 meters, as you’ve probably guessed. (Astrophysicists come up with very descriptive names for their telescopes and simulations.) 30 meters is really really big—about a third the length of an American football field and nearly the size of a baseball diamond’s infield. When it’s built it will look something like this:

url

(If you’re interested, here’s a shameless plug: we discussed the TMT’s groundbreaking on the Weekly Space Hangout with Universe Today yesterday, and you can see the video on YouTube.)

The groundbreaking and blessing ceremony, which included George Takei hosting a live webcast, didn’t go quite as planned. It was disrupted by a peaceful protest of several dozen people who oppose the telescope’s construction. The protesters chanted and debated with attendees and held signs with “Aloha ‘Aina” (which means ‘love of the land’) and using TMT to spell out “Too Many Telescopes.” There has been a history of tension over what native Hawaiians say is sacred ground in need of protection and is also one of the best places on Earth to place telescopes. This is a longstanding issue, and the tension between them back in 2001 was reported in this LA Times article. According to Garth Illingworth, co-chair of the Science Advisory Committee, “It was an uncomfortable situation for those directly involved, but the way in which the interactions with the protesters was handled, with considerable effort to show respect and to deal with the situation with dignity, reflected credit on all concerned.” In any case, construction will continue as planned.

20141008_015_MAUNAKEA_PROTESTS

The TMT’s science case includes observing distant galaxies and the large-scale structure of the early universe, and will enable new research on supermassive black holes, and star and planet formation. The TMT is led by researchers at Caltech and University of California (where I work), and Canada, Japan, China, India. Its optical to near-infrared images will be deeper and sharper than anything else available, with spatial resolution twelve times that of the Hubble Space Telescope and eight times the light-gathering area of any other optical telescope. If it’s completed on schedule, it will have “first light” in 2022 and could be the first of the next generation of huge ground-based telescopes. The others are the European Extremely Large Telescope (E-ELT, led by the European Southern Observatory) and the Giant Magellan Telescope (GMT, led by the Carnegie Observatories and other institutions), which will be located in northern Chile.

Every ten years, astronomers and astrophysicists prioritize small-, medium-, and large-scale ground-based and space-based missions, with the aim of advising the federal government’s investment, such as funding through the National Science Foundation (NSF) and NASA. The most recent decadal survey, conducted by the National Academy of Sciences is available online (“New Worlds, New Horizons in Astronomy and Astrophysics“). For the large-scale ground-based telescopes, the NSF will be providing funding for the Large Synoptic Survey Telescope (which I’ve written about here before) and the TMT. There had been debates about funding either the TMT or the GMT, but not both, though a couple years ago GMT scientists opted out of federal funding (see this Science article). NASA is focusing on space-based missions such as the upcoming James Webb Space Telescope (JWST) and Wide-Field InfraRed Survey Telescope (WFIRST), which will be launched later this decade.

Californians and the Environment

The Public Policy Institute of California (PPIC), a nonprofit, nonpartisan thinktank based in San Francisco, recently conducted a survey of Californians’ views of environmental issues. This is particularly important in light of the ongoing drought in the southwest and the upcoming elections in November. According to the report (available in PDF format), the results are based on the responses of 1,705 adult residents throughout California, interviewed in English and Spanish by landline or cell phone, and they’re estimated to have a sampling error of 4% (at the 95% confidence level). I’ll describe what I see as their most interesting results, and if you want more information, I encourage you to read the report.

Global warming: A strong majority say they are very concerned (40%) or somewhat concerned (34%) about global warming. Approximately two thirds of Californians (68%) support the state law, AB 32, which requires California to reduce its carbon emissions to 1990 levels by 2020, but the partisan divide (Democrats at 81% vs Republicans at 39%) has grown on this issue. 80% of Californians say that global warming is a very serious or somewhat serious threat to the economy and quality of life for California’s future. Only 45% of people are aware at all about the state’s cap-and-trade system, which took effect in 2012, but after being read a brief description, Californians are more likely to favor (51%) than oppose (40%) the program. Under a recent agreement between the governor and legislature, 25% of the revenues generated by the cap-and-trade program will be spent on high-speed rail, 35% on other mass transit projects and affordable housing near transit, and the rest for other purposes.

graph

Energy policies: overwhelming majorities of adults favor requiring automakers to significantly improve the fuel efficiency of cars sold in the U.S. (85%) and increasing federal funding to develop wind, solar, and hydrogen technology (78%). Strong majorities support the requirement that oil companies produce cleaner transportation fuels and the goal that a third of California’s electricity come from renewable energy sources. But residents’ support declines significantly if these two efforts lead to higher gas prices or electricity bills. (This is unfortunate, because gas and oil companies are heavily subsidized in the US, and maybe our gas and electricity bills are too low.) Most residents (64%) oppose building more nuclear power plants, as they have since the Fukushima disaster.

The survey includes other contentious issues: 54% of Californians oppose hydraulic fracturing, or fracking, for oil and natural gas extraction. But a majority (53%) support building the Keystone XL pipeline.

Water policies: Asked about some of the possible effects of global warming in California, majorities say they are very concerned about droughts (64%) or wildfires (61%) that are more severe. 35% say that water supply or drought is the most important environmental issue facing the state today (which is 27% higher than the fraction in a 2011 survey), and this is the first environmental survey in which air pollution was not the top issue. In another measure of concern about drought, strong majorities of residents (75%) say they favor their local water districts requiring residents to reduce water use. The CA legislature is discussing a $11.1 billion state bond for water projects that is currently on the November ballot, and a slim majority of likely voters would support it (51% yes, 26% no).

If you’re interested, the PPIC has useful information and publications on water policies and management of resources: see this page and this blog post series. Water policy analysts argue that in the Central Valley, where most agricultural water use occurs, the failure to manage groundwater sustainably limits its availability as a drought reserve. In urban areas, the greatest potential for further water savings lies in reducing landscaping irrigation—a shift requiring behavioral changes, not just the adoption of new technology. Finally, state and federal regulators must make tough decisions about how and when to allocate water during a drought: they must balance short-term economic impacts on urban and agricultural water users against long-term harm—even risk of extinction—of fish and wildlife.

People’s Climate March

This is a different topic and has nothing to do with the survey, but I want to use this opportunity to plug the People’s Climate March, which will be taking place on Sunday. (This website can direct you to events in your area.) One of the biggest marches and rallies will be in New York City, where the UN climate summit will soon be taking place. Even Ban Ki-moon will be participating! For San Diegans, you can find information about Sunday’s downtown events here. Californians also organized a “People’s Climate Train” to take activists and participants by train from the Bay Area through Denver and Chicago to New York, where they’ll be arriving tonight. Finally, I recommend reading this well written piece by Rebecca Solnit on Dr. Seuss’s The Lorax and the need to raise our voices on Sunday.

And the science budget debates continue…

Senator Coburn (R-OK) doesn’t like political science. (Is that why he’s retiring from politics this year? I doubt it.) In fact, he doesn’t seem to like the social sciences in general and would prefer to eliminate their funding from the National Science Foundation (NSF). His recent attempt at an amendment that would restrict political science funding was defeated, but we can’t always count on that happening, especially considering Rep. Lamar Smith (R-TX) and a few others share his views. Science budgets can fluctuate year by year, which has real consequences for scientists who depend on that funding and who have students and long-term projects that require consistent funding.

A couple months ago, I participated in the Congressional Visit Day with colleagues from the American Astronomical Society (AAS). Our goal was to talk to our Congress members about the importance of stable funding and investment in scientific research, telescopes, education, and outreach, and to encourage them to make these a priority. We focused on astronomy and astrophysics funding from the NSF and NASA, though there are other relevant agencies and departments, such as the Department of Energy. Although most Congress members and their staff seemed receptive to our message (including Coburn’s staff, who had nothing against the physical sciences), unfortunately the spending restrictions and numerous budget priorities make this a particularly complicated situation. This year’s story begins with the president’s proposed Fiscal Year 2015 budget, which leaves many agencies with sub-inflation budgets (without the Opportunity, Growth, and Security Initiative), so how will the story end? What’s a scientist to do?

Since we can agree that investing in science is critically important, we should follow the process in which these budgets are put together and negotiated. To do so though, we need to look into how the proverbial sausage is made—and it’s really more of a dubious hot dog than a gourmet bratwurst. The budget negotiation process is seemingly transparent, but to me it seems opaque in some ways and rather precarious—a good idea can get shot down and an unfortunate amendment could get stuck in the draft, for example. It’s kind of scary that the state of science in this country (and the fate of many scientists and their research programs) depends on so many unpredictable and capricious factors, though we can hope that the important issues are ironed out by the time a budget is finalized. We’re also affected by prior budget constraints, especially from the spending caps due to the Budget Control Act (which gave us the universally reviled “sequestration”).

background

I’ll give a brief description of the current state of affairs, but if you want more information, I refer you to the experts, especially Matt Hourihan (director of R&D Budget and Policy Program at AAAS) and Josh Shiode (Public Policy Fellow of AAS). And if you’re interested in seeing how our R&D funding compares to other countries, it shows total R&D (circle size) and as a function of GDP (x-axis) (the figure is taken from this).

Press2013_Fig2

First, we started with the Obama administration’s proposed FY 2015 budget request (PBR). At that point, the budget had to be negotiated by the House Commerce, Justice, Science (CJS) Appropriations Subcommittee, which included a “markup” process. The bill that emerged included increases to NASA and NSF’s budgets relative to the PBR and FY 2015 as well as smaller increases to education and human resources. The NSF budget certainly could have been worse, since there were lower funding levels in the controversial Frontiers in Innovation, Research, Science, and Technology Act (FIRST Act)—previously passed by the same committee—which was strongly opposed by university and science groups. The CJS bill also included small decreases to the budgets of the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) relative to the inflation rate. (More details are here.)

The budget then went to the House floor in May, and a modified budget was passed at the end of the month. House Majority Leader Eric Cantor (R-VA, who was defeated in a primary election) and House Science Committee Chairman Lamar Smith (R-TX) narrowly passed an amendment that reduced funding to the NSF’s Social, Behavioral, and Economics (SBE). In another development, Rep. Rush Holt (D-NJ, one of the only scientists in Congress), tried to restore funding for NOAA climate research that was cut by the Appropriations Committee, but this amendment failed. (For more details about the House budget bill, look here and here.)

The Appropriations bill also included an amendment proposed by Rep. Alan Grayson’s (D-FL) that would provide protection for journalists against compulsory disclosure of their confidential sources. “That right is recognized in 49 states, but it’s not codified at the federal level,” Grayson said. The amendment passed by a vote of 225-183.

current status

The Senate Appropriations Committee produced a modified budget bill last week and a series of reports about individual agencies. This article describes the budget differences for NASA in the Senate bill vs the House bill and vs the previous year (FY 2014). Although the total NASA budget are similar in the Senate and House bills, the Senate allocates funding within the Science Mission Directorate (SMD) differently: the Senate bill includes more for exploration and less for aeronautics, space technology, and space operations. Unfortunately, both bills have decreased funding for education, though the funding levels are not as low as in the Obama Administration’s PBR.

Fortunately, both bills rejected the President’s proposal to cut the Stratospheric Observatory for Infrared Astronomy (SOFIA). The allocated funding would be enough for NASA to continue to cover its share of the operating costs. The Senate committee also provided funding for the Wide-Field Infrared Survey Telescope (WFIRST), which is planned to launch in the mid-2020s.

Nsf1

This article describes the Senate vs House budget differences for the NSF. Unfortunately, the Senate Appropriations Committee gave the NSF a lower funding level by 2.1% than the House, but it’s possible that this may change. I’ll also mention that a couple months ago the Senate confirmed France Córdova as the new director of the NSF. She said that better communicating the importance of the basic research that the NSF supports is one of her priorities. Córdova is an astrophysicist, the former president of Purdue University, and now the second women to head the agency.

Now the “minibus” (as opposed to “omnibus”) bill heads to the Senate floor this week, so the next steps depend on these 100 people:
111th_US_Senate_class_photo
(Note that the various budget bills are being considered separately; for example, Labor, Health and Human Services bill, which funds the Affordable Care Act, will be more controversial and likely will take more time.) We may see important changes and amendments in the near future, and I will try to keep this page updated. The differences between the House and Senate budget bills will need to be resolved, and that can be a contentious process. We hope that the Senate will be less stingy with NSF funding and that it will continue with the Appropriations Committee’s funding levels for NOAA and NIST. There was some disagreement about the Office of Oceanic and Atmospheric Research’s work on climate research and ocean acidification, and these will have to be resolved as well. To be continued…

Big Science and Big Data

I’d like to introduce the topic of “big science.” This is especially important as appropriations committees in Congress debate budgets for NASA and NSF in the US (see my previous post) and related debates occurred a couple month’s ago in Europe over the budget of the European Space Agency (ESA).

“Big science” usually refers to large international collaborations on projects with big budgets and long time spans. According to Harry Collins in Gravity’s Shadow (2004),

small science is usually a private activity that can be rewarding to the scientists even when it does not bring immediate success. In contrast, big-spending science is usually a public activity for which orderly and timely success is the priority for the many parties involved and watching.

He goes on to point out that in a project like the Laser Interferometer Gravitational-Wave Observatory (LIGO), it’s possible to change from small science to big but it means a relative loss of autonomy and status for most of the scientists who live through the transition. Kevles & Hood (1992) distinguish between “‘centralized’ big science, such as the Manhattan Project and the Apollo program; ‘federal’ big science, which collects and organizes data from dispersed sites; and ‘mixed’ big science, which offers a big, centrally organized facility for the use of dispersed teams.”

In addition to LIGO, there are many other big science projects, such the Large Hadron Collider (LHC, which discovered the Higgs boson), the International Thermonuclear Experimental Reactor (ITER), and in astronomy and astrophysics, the James Webb Space Telescope (JWST, the successor to Hubble), the Large Synoptic Survey Telescope (LSST, pictured below), and the Wide-Field InfraRed Survey Telescope (WFIRST), for example.

Dome_at_Night-half

Note that some big science projects are primarily supported by government funding while others receive significant funding from industry or philanthropists. LSST and LIGO are supported by the NSF, JWST and WFIRST are supported by NASA, and LHC is supported by CERN, but all of these are international. In the case of the fusion reactor ITER (see diagram below), on which there was a recent detailed New Yorker article, it has experienced many delays and has gone over its many-billion-dollar budget, and it has had management problems as well. While budget and scheduling problems are common for big science projects, ITER is in a situation in which it needs produce results in the near future and avoid additional delays. (The US is committing about 9% to ITER’s total cost, but its current contribution is lower than last year’s and its future contributions may be reevaluated at later stages of the project.)

in-cryostat overview 130116

As scientists, we try to balance small-, mid-, and large-size projects. The large ones are larger than before, require decades of planning and large budgets, and often consist of collaborations with hundreds of people from many different countries. It’s important to be aware that relatively small- and mid-scale projects (such as TESS and IBEX in astronomy) are very important too for research, innovation, education, and outreach, and as they usually involve fewer risks, they can provide at least as much “bang for the buck” (in the parlance of our times).

In the context of “big science” projects these days, the concepts of “big data” and “data-driven science” are certainly relevant. Many people argue that we are now in an era of big data, in which we’re obtaining collections of datasets so large and complex that it becomes difficult to process them using on-hand database management tools or traditional data processing applications. Since the volume, velocity, and variety of data are rapidly increasing, it is increasingly important to develop and apply appropriate data mining techniques, machine learning, scalable algorithms, analytics, and other kinds of statistical tools, which often require more computational power than traditional data analyses. (For better or for worse, “big data” is also an important concept in the National Security Agency and related organizations, in government-funded research, and in commercial analyses of consumer behavior.)

In astronomy, this is relevant to LSST and other projects mentioned above. When LSST begins collecting data, each night for ten years it will obtain roughly the equivalent amount of data that was obtained by the entire Sloan Digital Sky Survey, which was until recently the biggest survey of its kind, and it will obtain about 800 measurements each for about 20 billion sources. We will need new ways to store and analyze these vast datasets. This also highlights the importance of “astrostatistics” (including my own) and of “citizen science” (which we introduced in a previous post) such as the Galaxy Zoo project. IT companies are becoming increasingly involved in citizen science as well, and the practice of citizen science itself is evolving with new technologies, datasets, and organizations.

I’ll end by making a point that was argued in a recent article in Science magazine: we should avoid “big data hubris,” the often implicit assumption that big data are a substitute for, rather than a supplement to, traditional data collection and analysis.

My Experience with the Congressional Visit Day

[A previous version of this first appeared as a Guest Post on the AAS Policy Blog.]

Last week, I participated in the Congressional Visit Day (CVD) with the American Astronomical Society (AAS). I was just one member in a group of eighteen AAS members—a diverse group from around the country involved in many different subspecialties of astronomical research, as well as various teaching and outreach programs. Below, is a nice photo of us is (and I’m the guy wearing a hat). Our AAS delegation was part of a larger group of scientists, engineers, and business leaders involved in a few dozen organizations participating in the CVD, which was sponsored by the Science-Engineering-Technology Work Group. Go here for a further description of our program.

aas_cvd_2014

As scientists and members of the AAS, we had a few primary goals. We argued first and foremost for the importance of investing in scientific research (as well as education and outreach) through funding to the National Science Foundation (NSF), NASA, and science in particular departments (especially the Depts. of Energy and Defense). If you’re interested, you can see our handout here. We also encouraged our Representatives to sign two “Dear Colleague” letters that are currently passing through the House: the first letter is by Rep. G. K. Butterfield (D-NC) and is asking for a 3% increase to NSF’s FY 2015 budget to $7.5 billion, and the second letter is by Rep. Rush Holt (D-NJ), Rep. Randy Hultgren (R-IL), and Rep. Bill Foster (D-IL) and is asking the appropriators to “make strong and sustained funding for the DOE Office of Science one of your highest priorities in fiscal year 2015.”

We also told our Congress members about our personal experiences. In my case, I have been funded by NASA grants in the past and am currently funded by a NSF grant. I am applying for additional research grants, but it’s not easy when there is enough funding available only for a small fraction of submitted grant proposals. In the past, I have also benefited from projects and telescopes that were made possible by NASA and the NSF, and I plan to become involved in new telescopes and missions such as the Large Synoptic Survey Telescope (LSST), the Wide-Field InfraRed Survey Telescope (WFIRST), and possibly the James Webb Space Telescope (JWST, the successor to the Hubble Space Telescope). Also, if a NSF grant I’ve submitted is successful (fingers crossed!), I will be able to participate more actively in public outreach programs especially in the San Diego area in addition to continuing my research.

Not only did we explain the importance of stable funding for basic research, we also talked with our legislators about how astronomy is a “gateway science” that draws people in and inspires them to learn more, become more involved, and even potentially become scientists themselves.

We talked about the importance of improving science and math literacy, which also improves US competitiveness with respect to other countries, and about how investment in science spurs innovation in industry and leads to new and sometimes unexpected developments in computing, robotics, optics, imaging, radar, you name it. Since “all politics is local,” as they say, we also emphasized that these investments in scientific research are important for strong local, as well as national, economies. As we were visiting shortly after the introduction for the President’s Budget Request (PBR) for FY 2015, we also expressed our concern that the proposed budget reduces funding for NASA’s education and outreach activities within the Science Mission Directorate by two-thirds, and would require mothballing the Stratospheric Observatory For Infrared Astronomy (SOFIA) outside of the well-established senior review process.

My Congress members are Senators Barbara Boxer and Dianne Feinstein, whose staff we met, and Representative Susan Davis (CA-53), with whom we met personally (along with a member of her staff). We had a quick photo-op too, right before she had to get back to the House chamber for a vote. I was in a group with two other astronomers who were from Oklahoma and Illinois, and we met with their respective Congress members as well. Our larger group was split into teams of three to four for the days visits, and each met with the representatives and senators of all team members.

photo 4

Senators and Representatives serve on different committees and subcommittees, each with a specific jurisdiction over parts of the federal government. For example, Sen. Boxer is on the Science & Space Subcommittee of Senate’s Commerce Committee and is the chair of the Committee on Environment & Public Works. Sen. Feinstein is chair of the Senate Appropriations Committee’s Subcommittee on Energy & Water, which has jurisdiction over the Department of Energy (among many other things). The appropriations committee is responsible for writing legislation that grants federal agencies the ability to spend money, that is, they appropriate the budgets for the agencies under their jurisdiction. Rep. Davis is a member of the House Education & Workforce Committee and has done a lot of work on educational reform, promoting youth mentoring, and civic education.

I think that we received a largely positive responsive from our congressional representatives. My three Congress members were very supportive and in agreement with our message. Some of the other members we met with, while generally positive about our message, left me with the impression that they approved of our “hard sciences” but didn’t want as much funding going to social sciences, climate science, and other particular fields. It seems to me that we must get ourselves out of this highly constrained budget environment, in which discretionary programs like those funding the sciences are capped each year; we need to either find additional sources of revenue (e.g., reducing tax breaks) or make other changes to current law.

In my previous blog post, I talked about the proposed budget and the negotiations taking place in Congressional committees. We also need to consider the current political situation with the upcoming mid-term elections. Once a budget (which may be significantly different than the PBR) is passed by the House and Senate Appropriations Committees, it will be considered by the House and Senate, which are currently controlled by Republicans and Democrats (who have 53 seats plus 2 independents who caucus with them). However, it appears possible that Republicans may retake the Senate in the 114th Congress, and in that case their leadership may resist even small additions to the current budget request and may attempt to simply pass a “continuing resolution” instead.

On the same day as our CVD (26th March), Office of Science and Technology Policy Director John Holdren appeared before the House Committee on Science, Space, and Technology, where there were considerable disagreements among the committee members about STEM education, SOFIA, and other issues. (Note that the committee is particularly polarized and has been criticized for its excessive partisanship and industry influence.) Fortunately, on the following day, a hearing before House appropriators on the NSF budget request fared better. This is encouraging, but in any case it will be a difficult struggle to produce a good budget (that is, good for science) within a short time-scale.

The Proposed Fiscal Year 2015 Budget: Thoughts on its Implications for Science

I’d like to make a few comments on the proposed US federal budget for Fiscal Year 2015 (FY15, which starts in October), especially on its implications for science research and education in this country. First, I’ll acknowledge articles and blogs by Matt Hourihan (at the American Association for the Advancement for Science) and Josh Shiode (at the American Astronomical Society), which I’ve used for some of the information and figures below. I’m responsible though if I’ve misstated any facts or numbers, and as usual, any opinions I express about the current state of affairs are my own. I look forward to discussing these issues with scientists and other interested people, and as usual, you’re welcome to write or send me comments.

President Obama’s administration officially released its President’s Budget Request (PBR, but not the beer!) on 4th March, and the details are available on the White House’s website. The PBR is formulated by the Office of Management and Budget (OMB), and it soon be evaluated and revised by the Appropriations Committees in Congress. The White House’s Office of Science & Technology Policy (OSTP) plays a role in developing the budget, but naturally there are many other considerations involved as well, such as ensuring national security, strengthening the economy, maintaining healthcare and education programs, etc. Nonetheless, from the perspective of science research and education, the budget certainly could be better.

15p R&D Pie_AAAS

Unfortunately, the Budget Control Act puts spending caps on support for research and development (R&D). Assuming little to no additional revenue, there is not much room in the discretionary budget above FY 2014 levels. With three-quarters of the post-sequester spending reductions still in place (see my previous blog post), many agency R&D budgets are stagnant. The $3.901 trillion budget includes $136.5 billion for R&D, which is a 0.5% increase over FY 2014 but that doesn’t account for the 1.7% inflation rate. The divisions by agency are described by the above pie chart (courtesy: AAAS) and in this article. Funding for the physical sciences largely comes from the National Science Foundation (NSF), NASA, the Department of Energy (DOE) Office of Science, and other agencies and departments. Total research funding (basic+applied research) has dropped 1.9% below FY 2014 levels, which is only slightly above FY 2013 post-sequester levels.

budget_diffs_WP

The President has also proposed additional $56B of funding through the Opportunity, Growth, and Security Initiative (OSGI), which would help the situation for many agencies, but it appears that Congress won’t have the stomach for it. As can be seen in the figure above (courtesy: Washington Post), an additional difficulty comes from differences between the revenue projections of the President and the Congressional Budget Office (CBO); the former assumes revenue increases from some reduced tax breaks for wealthy Americans, to which Congress likely won’t agree. In that case, we may be headed back toward sequestration funding levels in FY 2016.

RandDprojections_AAAS

The Association of American Universities (AAU) and the American Astronomical Society (AAS, of which I’m a member) have expressed some criticism of the proposed budget: while they acknowledge the caps on discretionary spending, they argue that basic research and education could receive higher priority. A surprising cut that was proposed was to the Stratospheric Observatory for Infrared Astronomy (SOFIA), which is an aircraft telescope. The axing of SOFIA in 2015 is particularly vexing for astronomers because it occurred outside the established review process. The FY 2014 budget proposed a controversial government-wide reorganization of science, technology, engineering and mathematics (STEM) education programs, and this year’s budget includes a surprising cut (by 2/3!) to the STEM education budget within NASA’s Science Mission Directorate (SMD). Time will tell how education programs adapt to these changes, but cuts like these potentially hurt US competitiveness relative to Europe and East Asia as well as efforts toward improving science and math literacy.

According to Jack Burns (U. of Colorado, Boulder), “by lowering overall spending on the astronomical sciences, the Administration threatens the health of our technical workforce and the education and training of the next generation of space scientists. This is hard to swallow at a time when other countries are increasing their investments in science and technology.” Similarly, in Science magazine, William Press argues that, “it appears that [nations] who spend close to 3% of their GDP on R&D are the ones that compete most successfully. The United States is in that club now. We don’t want to fall out of it.”

I’m most interested in astronomy/astrophysics, because it’s my field, but other fields are affected as well. For example, the budget of the National Institutes of Health (NIH) only received a sub-inflationary increase (like most agencies), and the proposed budget includes a substantial cut to fusion energy research and to the US contribution to the International Fusion Experiment (ITER), though funding for energy efficiency and renewables would increase. The Environmental Protection Agency (EPA) would also receive a cut in this budget.

fedspending_AAAS

Finally, as this bar graph shows, the budget prospects for nondefense discretionary spending will likely worsen in the coming years. “Mandatory spending” is controlled by different mechanisms than discretionary spending, and it includes Medicare, Medicaid, Social Security, which are large programs, as well as food stamps, unemployment compensation, and other smaller ones. As a fraction of GDP, we can expect mandatory spending to continue increasing. On this point, I’ll first say that in my personal view, I’m wary of those who criticize these programs (or who refer to them pejoratively as “entitlements”), because such criticisms give space for extreme conservatives who would rather gut these programs and let the poor, ill, hungry, and elderly suffer on their own. Nonetheless, it appears that, the way that they are currently funded, the cost of Medicare and Medicaid programs is growing at an unsustainable rate (faster than inflation). The Affordable Care Act is helping, but it’s probably insufficient to resolve this situation, especially as more baby boomers draw on retirement and health care benefits. Long-term fiscal problems remain.

We also need to consider the current political situation in Congress. I participated in a Congressional Visit Day with the AAS this week, and I’ll soon write my next blog post about that.

On the US federal budget

I’d like to briefly comment on the budget(s) being negotiated in Congress.  In particular, I’ll try to focus on the impact on investment in science, though there are other important issues as well, such as the unemployment benefits that apparently won’t be extended and the cuts on military retirees’ benefits.  The budget plan led by Rep. Paul Ryan (who is a questionable choice for the job) and Sen. Patty Murray has passed the House and is expected to pass in the Senate later today.

Budget negotiations are often boring but are nonetheless important.  The current two-year budget plan has advantages and disadvantages.  The first and most ridiculous “advantage” is that a budget deal would avoid a government shutdown.  Such is the state of affairs in US politics.  The shutdown harmed many sectors of the government: clinical trials at the NIH were suspended; inspections and other work was suspended at the FDA and Consumer Product Safety Commission; staff at the CDC and EPA were put on furlough; key tests for NASA’s James Webb Space Telescope (the successor to Hubble) were suspended; the National Science Foundation canceled its Antarctic research program; and three of the National Radio Astronomy Observatory’s telescopes were shut down, resulting in a substantial loss of data.  Ultimately, this considerably hurts US competitiveness in science: according to the OECD, the US is ranked 21st and 26th in science and math, below a few developing countries such as Vietnam.

An important advantage of the current budget bill is that it eases some of the across-the-board spending cuts due to the “sequestration”.  These cuts were extremely harmful on basic scientific research, which already receives less than 1% of the federal budget, as opposed to at least 20% to the military.  Earlier this year, more than fifty Nobel laureates wrote to Congress, urging them to remove these cuts to science investment.  Scientific research will be affected for years to come, and research funded by the NIH, NSF, NASA, and the DOE’s Office of Science are particularly affected.  Federally funded agencies and universities have attempted to sustain their research programs and avoid laying off scientists, but some may no longer be able to continue doing so.  Science and engineering education at colleges and universities have been affected as well.

Under the Ryan/Murray deal, approximately 75% of the spending reduction under sequestration will remain in place.  According to the American Association for the Advancement of Science, the deal may result in a restoration of roughly $8 billion in R&D funding above sequester levels over the next two years, though the final allocations for FY 2014 are now up to appropriators.

Though the budget deal may be better than no deal at all, it seems possible that congressional lawmakers could come up with and pass a better budget.  Science research and education should be spared the sequestration’s cuts.